ΔU and ΔH for Physical Changes

Min Huang
CheEng@TongjiU

ΔU and ΔH for Temperature Change

- Variational Statement of the 2nd Law:
- energy flow is from the hot body to cold body

$$
\begin{aligned}
& T^{(1)}>T^{(2)} \rightarrow \Delta E^{(1)}<0 \\
& T^{(1)}<T^{(2)} \rightarrow \Delta E^{(1)}>0
\end{aligned}
$$

- at equilibrium

$$
T^{(1)}=T^{(2)}
$$

- Therefore, when temperature rises, \boldsymbol{U} and \boldsymbol{H} increase.
- From the definition, ΔH and ΔU differ in that $\Delta \mathrm{H}$ includes the work needed to push back the atmosphere as the material heats up and expands.
- At constant $V: \Delta U=n \int C_{V} d T$
- At constant $P: \Delta H=n \int C_{p} d T$
- For liquids and solids the volume change is very small, hence, $\Delta \mathrm{H} \approx \Delta \mathrm{U}$

1 kg material from 20 to $30^{\circ} \mathrm{C}$

At 1 atm	$\Delta(P V)=$ $\Delta H-\Delta U$	ΔH $\mathrm{~J} / \mathrm{kg}$	ΔU $\mathrm{~J} / \mathrm{kg}$
air	$2850 \mathrm{~J} / \mathrm{kg}$	7170	10020
water	$0.1 \mathrm{~J} / \mathrm{kg}$	41840	41840
iron	$0.004 \mathrm{~J} / \mathrm{kg}$	4494	4994

ΔU and ΔH for Phase Change

- Liquid to gas
- Energy to make the molecules to active and energetic so that they fly apart from each other: ΔU
- Energy has to be added to push the atmosphere back and make room for the volume increase: $\Delta(P V)$
- Called latent heat of vaporization $H_{l g} \mathrm{~J} / \mathrm{kg}$

ΔU and ΔH for Phase Change

- Latent heat of vaporization is also a function of temperature

When the molecules of liquid are cold, it takes more energy to tear them away from their neighbors to form vapor.
Water: $\mathbf{2 4 5 4 . 1}, \mathbf{8 9 3 . 4} \mathbf{~ k J} / \mathrm{kg}$ at $20^{\circ} \mathrm{C}, 350^{\circ} \mathrm{C}$

- Liquid to solid: heat of fusion
- The volume change is very small

Preparing a cup of tea

- Pour 1 liter of water at $20^{\circ} \mathrm{C}$ into a thermally insulated electrically heated teapot.
- After I plug in, how long will I have to wait for the pot to whistle?
- Data the metal of the teapot is equivalent to $200 \mathrm{~cm}^{3}$ of water, and the label on the teapot tells that its heater is rated at 1250 W

Solution

- Let the kettle and its contents be the system.
- At constant $P: \quad \Delta H=n \int C p d T$
- $\Delta H=Q-W_{s h}$
- $\Delta H=-W_{s h}=n C p \Delta T$ Sensible Heat

$$
\begin{aligned}
& (1.2 \mathrm{lit})\left(\frac{1 \mathrm{~kg}}{1 \mathrm{lit}}\right)\left(4184 \frac{\mathrm{~J}}{\mathrm{~kg}^{\circ} \mathrm{C}}\right)\left(100^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right) \\
& =401664 \mathrm{~J} \\
& \text { time needed }=\frac{401664 \mathrm{~J}}{1250 \mathrm{~J} / \mathrm{s}}=321 \mathrm{~s}
\end{aligned}
$$

Sensible Heat
Heat transfer to a system in which there are no phase transitions, no chemical reactions, and no changes in composition causes the temperature of the system to change. Only the relationship between the quantity of heat transferred and the resulting temperature change.

The maddening whistle

- How long will the shrill whistling?
- Assuming no one is around, the whistling only stops when all the water boils away.
- $\Delta H=-W_{s h}=n H_{l g} \quad$ Latent Heat

$$
(1 l i t)\left(\frac{1 \mathrm{~kg}}{1 l i t}\right)\left(2255 \frac{K J}{k g}\right)=2255 \mathrm{~kJ}
$$

Latent Heat

- When a pure substance is liquefied from the solid state or vaporized from the liquid at constant pressure, no change in temperature occurs; however, the process requires the transfer of a finite amount of heat to the substance.
- These are heats of transition accompanying the change of a substance from one solid state to another.

The thermodynamics of a spectacular crash

- Avocado and puce colored 1923 Hupmobile sedan deluxe, 200km/hr
- 1996 Ford Thunderbird 32 cylinder super, 200km/hr

Hupmobile sedan deluxe

1987 NASCAR version of the Thunderbird

The fastest lap in stock car history, 44.998 sec, $212.809 \mathrm{mph}(342.483 \mathrm{~km} / \mathrm{h}$) at Talladega Superspeedway, a record that still stands

Quiz III

- Head on crash. What is the temperature rise, and what are ΔU and ΔH for this catastrophic event?

- Data each car weights 2 tons and has an average C_{p} of $0.5 \mathrm{~kJ} / \mathrm{kg} / \mathrm{K}$

ΔU and ΔH for Chemical Reaction

Min Huang
CheEng@TongjiU

- At constant $V: \Delta U_{r}=Q-W$
- At constant $P: \Delta H_{r}=Q-W$
- For liquids and solids $\Delta(p V) \approx 0$
- $\Delta H_{r}=\Delta U_{r}+\Delta(p V)$
- For ideal gases only, at temperature T and pressure p,
- $\Delta H_{r}=\Delta U_{r}+(\Delta n) R T$
- If no change of moles $\Delta H_{r}=\Delta U_{r}$
- If $\Delta H_{r}>0$, it means the Hafter has to be larger than Hbefore, hence energy must be added, otherwise the system would cool.
- If $\Delta H_{r}<0$, the system must be cooled to keep temperature unchanged.
- $\Delta H_{r}>0$, the reaction is endothermic
- $\Delta H_{r}<0$, the reaction is exothermic

Reaction network at standard conditions, $25^{\circ} \mathrm{C}$ and 1 atm

Combustion products at 298 K $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \mathrm{CO}_{2}(\mathrm{~g}), \mathrm{SO}_{2}(\mathrm{~g})$, etc.

Reaction network at standard conditions, $25^{\circ} \mathrm{C}$ and 1 atm

- $\Delta H_{f 1}+\Delta H_{r 3}=\Delta H_{f 2}$
- $\Delta H_{r 3}+\Delta H_{c 5}=\Delta H_{c 4}$
- In general,
- $\Delta H_{r}=\sum \Delta H_{f}($ products $)-\sum \Delta H_{f}($ reactants $)$
- $\Delta H_{r}=\sum \Delta H_{c}$ (reactants) $-\sum \Delta H_{c}$ (products)

$\mathrm{C}_{10} \mathrm{H}_{8}(\mathrm{~s})+6 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ $-{ }_{--->10 H C N(g)+N_{2}}(\mathrm{~g})$

- $\Delta \mathrm{H}_{\mathrm{f}}(3)=0, \Delta \mathrm{H}_{\mathrm{f}}(4)=-285.84$,
- $\Delta \mathrm{H}_{\mathrm{f}}(5)=130.54, \Delta \mathrm{H}_{\mathrm{f}}(6)=81.5$
- $\Delta H_{c}(8)=-5157$
- $\Delta \mathrm{H}_{\mathrm{f}, \mathrm{C} 10 \mathrm{H} 8}=$?
- $1=2+8$, or $2=1-8$
- $\Delta \mathrm{H}_{\mathrm{f}, \mathrm{C} 10 \mathrm{H} 8}=\left[10\left(\Delta \mathrm{H}_{\mathrm{f}, \mathrm{CO} 2}+4\left(\Delta \mathrm{H}_{\mathrm{f}, \mathrm{H} 2 \mathrm{O}(\mathrm{I})}\right)\right]-\Delta \mathrm{H}_{\mathrm{c}, \mathrm{C} 10 \mathrm{H} 8}\right.$
- $\Delta \mathrm{H}_{\mathrm{f}, \mathrm{C} 10 \mathrm{H} 8}=10(-393.5)+4(-285.84)-(-5157)$

$$
=78.64 \mathrm{~kJ}
$$

Quiz:

- Find $\Delta H r=?$
- $2+3+4+7=5+6$
- $7=5+6-(2+3+4)$
- $\Delta H_{r}=10\left(\Delta H_{f, H C N}\right)+\Delta H_{f, N 2 O}$

$$
-\left[\Delta \mathrm{H}_{\mathrm{f}, \mathrm{C} 10 \mathrm{H} 8}+6 \Delta \mathrm{H}_{\mathrm{f}, \mathrm{~N} 2}+\Delta \mathrm{H}_{\mathrm{f}, \mathrm{H} 2 \mathrm{O}(\mathrm{I})}\right]
$$

- $=10(130.54)+81.5-[78.64+0+(-285.84)]$
- =1594.10 kJ/mol
- It is a highly endothermic reaction, requiring a considerable heat input.

Reactions at other than standard conditions

T	Reactants At T	$\Delta \mathrm{H}_{\mathrm{r}, \mathrm{T}}=\Delta \mathrm{H}_{1}=$?	Products At T
	Cool react $\Delta \mathrm{H}_{2}$	$\begin{aligned} & \text { ne } \\ & \text { its } \end{aligned}$	Heat the products $\Delta \mathrm{H}_{4}$
	Reactants $\text { At } 298 \text { K }$	$\Delta H_{r, 298}=\Delta H_{3}$	Products At 298 K

Reactions at other than standard conditions

- $\Delta \mathrm{H}_{1}=\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}+\Delta \mathrm{H}_{4}$
- Kowning c_{p} 's and $\Delta \mathrm{H}_{\mathrm{r}, 298}$ will allow you to calculate $\Delta \mathrm{H}_{1}$

Example

- From the $\Delta \mathrm{H}_{\mathrm{C}}$ and $\Delta \mathrm{H}_{\mathrm{f}}$ tables, we can calculate the standard heat of gas phase reaction, $\mathrm{A}+\mathrm{B} \rightarrow 2 \mathrm{R} \ldots \Delta \mathrm{H}_{\mathrm{r}, 298}=-50 \mathrm{~kJ}$
- At $25^{\circ} \mathrm{C}$ the reaction is strongly exothermic. But that doesn't interest me be cause we plan to run the reaction at $1025^{\circ} \mathrm{C}$.
- What is the $\Delta \mathrm{H}_{\mathrm{r}}$ at that temperature, and is the reaction still exothermic at that temperature?
- Average C_{p} :
- $\mathrm{C}_{\mathrm{p}, \mathrm{A}}=35 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}, \mathrm{C}_{\mathrm{p}, \mathrm{B}}=45 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$
- $C_{p, R}=80 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$

Example

Example

- Making an enthalpy balance for $1 \mathrm{~mol} A$, 1 mol B , and 2 mol R,
- $\Delta \mathrm{H}_{1}=\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}+\Delta \mathrm{H}_{4}$
- $=\left(\mathrm{nc}_{\mathrm{p}} \Delta \mathrm{T}\right)_{\text {Reactants }}+\Delta \mathrm{H}_{\mathrm{r}, 25}+\left(\mathrm{nc}_{\mathrm{p}} \Delta \mathrm{T}\right)_{\text {Products }}$
- =1(35)(25-1025)+1(45) (25-1025)+(50000)+2(80) (25-1025)
- $=30 \mathrm{~kJ}$ endothermic

