Ideal Gases and the 2nd Law

(Understanding Engineering Thermo—Octave Levenspiel)

Min Huang, PhD
Chemical Engineering

Tongji University

BATCH OF IDEAL GAS

- Recall the $1^{\text {st }}$ and $2^{\text {nd }}$ law,

$$
\begin{aligned}
& d E=d l+d W \\
& d S=|1| T|d E-|f| T| \cdot d \underline{X}
\end{aligned}
$$

- therefore,

$$
\Delta \mathrm{S}=\int \frac{\mathrm{dQ}}{\mathrm{rev}} \mathrm{~T}
$$

- Constant volume process

$$
\begin{gathered}
W_{r e v}=0,=\Delta U \\
\Delta S=\int \frac{d Q_{r e v}}{T}=\int \frac{n c ⿱ d}{} \frac{d T}{T}=n c \ln \frac{T_{2}}{T_{1}}=n c \cdot \ln \frac{p_{2}}{p_{1}}
\end{gathered}
$$

- Constant pressure process

$$
\begin{gathered}
W_{\text {rev }}=\int p d V=p \Delta V=n R \Delta T \\
\Delta U=n c_{v} \Delta T \\
Q_{\text {rev }}=\Delta U+W_{\text {rev }}=n c_{v} \Delta T+n R \Delta T=n c_{p} \Delta T \\
\Delta S=\int \frac{d Q_{\text {rev }}}{T}=\int \frac{n c_{p} d T}{T}=n c_{p} \ln \frac{T_{2}}{T_{1}}=n c_{p} \ln \frac{v_{2}}{v_{1}} \\
W_{\text {rev }}=n R\left(T_{2}-T_{1}\right)
\end{gathered}
$$

- Constant temperature process

$$
\begin{gathered}
Q_{\text {rev }}=W_{\text {rev }}=\int p d v \\
d Q_{\text {rev }}=p d v=\frac{n R T}{V} d v \\
\Delta S=\int \frac{d Q_{\text {rev }}}{T}=\int \frac{n R T}{v T} d v=n R \ln \frac{v_{2}}{v_{1}}=-n R \ln \frac{p_{2}}{p_{1}} \\
W_{\text {rev }}=-n R \ln \frac{p_{2}}{p_{1}}
\end{gathered}
$$

- Going from $p_{1} v_{1} T_{1}$ to $p_{2} v_{2} T_{2}$ in general
- Constant $\mathrm{p}_{1}, \mathrm{~T}_{1}$ to T_{2}
- Constant $\mathrm{T}_{2}, \mathrm{p}_{1}$ to p_{2} 」

This is specific, why ?

- Recall

$$
\begin{aligned}
& \Delta S=\int \frac{d Q_{\text {rev }}}{d T}=\int \frac{n c_{p} d T}{T}=n c_{p} \ln \frac{T_{2}}{T_{1}}=n c_{p} \ln \frac{v_{2}}{v_{1}} \text { Const } p \\
& \Delta S=\int \frac{d Q_{\text {rev }}}{d T}=\int \frac{n R T}{V T} d v=n R \ln \frac{v_{2}}{v_{1}}=-n R \ln \frac{p_{2}}{p_{1}} \text { Const } T
\end{aligned}
$$

- Therefore,

$$
\begin{gathered}
\Delta S=n c_{p} \ln \frac{T_{2}}{T_{1}}-n R \ln \frac{p_{2}}{p_{1}} \quad \Delta S=n c_{v} \ln \frac{T_{2}}{T_{1}}+n R \ln \frac{v_{2}}{v_{1}} \\
\Delta S=n c_{v} \ln \frac{p_{2}}{p_{1}}+n c_{p} \ln \frac{v_{2}}{v_{1}}
\end{gathered}
$$

- Reversible work
- Going from $p_{1} T_{1}$ to $p_{2} T_{2}$, one can take various paths, two are as follow,
- Constant p_{1}, T_{1} to $T_{2}+$ Constant T_{2}, p_{1} to p_{2}
- Constant $\mathrm{T}_{1}, \mathrm{p}_{1}$ to $\mathrm{p}_{2}+$ Constant $\mathrm{p}_{2}, \mathrm{~T}_{1}$ to T_{2}

$$
\begin{aligned}
& W_{1+2}=n R\left(T_{2}-T_{1}\right)-n R T_{2} \ln \frac{p_{2}}{p_{1}} \\
& W_{3+4}=-n R T_{1} \ln \frac{p_{2}}{p_{1}}+n R\left(T_{2}-T_{1}\right)
\end{aligned}
$$

- they are clearly different-path dependent!So is the heat!
- However, $\Delta S=\int \frac{d Q_{\text {rev }}}{d T}$ is independent of the path taken
- Adiabatic reversible processes $(Q=0 ; S=0)$
low pressure low pressure

compressor
turbine
- From $1^{\text {st }}$ law
- And flow systems
- From $2^{\text {nd }}$ law

$$
\begin{aligned}
& \Delta s=\int \frac{\mathrm{dq}_{\mathrm{rev}}}{\mathrm{~T}}=0 \\
& \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\left(\frac{\mathrm{p}_{2}}{\mathrm{p}_{1}}\right)^{\frac{(k-1)}{k}}
\end{aligned}
$$

Example I

- Rupture of a diaphragm in an insulated tank
- Find ΔS for this process

- From the $1^{\text {st }}$ law, $\mathrm{Q}=0$ and $\mathrm{W}=0$
- Therefore $\Delta U=0$, so for ideal gas, $\mathrm{T}_{\text {final }}=300 \mathrm{~K}, \mathrm{~V}_{\text {fina }}$ $=20$ lit, $\mathrm{p}_{\text {final }}=1.5 \mathrm{bar}$ and $\mathrm{n}=1.2 \mathrm{~mol}$

$$
\begin{aligned}
& Q_{\text {rev }}=W_{\text {rev }}=n R T \ln \frac{v_{\text {final }}}{v_{\text {intitial }}} \\
& \Delta S=\int \frac{d Q_{\text {rev }}}{d T}=n R \ln \frac{v_{\text {final }}}{v_{\text {initial }}} \\
& =(1.2 \mathrm{~mol}) \quad\left(8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right) \ln \frac{20}{10}=6.92 \mathrm{JK}^{-1}
\end{aligned}
$$

- $\mathrm{Q}_{\text {actual }}=0$ because the process is adiabatic and irreversible. We had to devise a reversible path and use the $\mathrm{Q}_{\mathrm{rev}}$ for $\Delta \mathrm{S}$. $\mathrm{Q}_{\mathrm{rev}} \neq 0$.

Example II

- Making money from wasted air
- Presently, high-pressure air (v=20 lit/s, T=300 K, p=10 atm) is vented to one atmosphere.
- We considering installing a turbine with an electricity generator to recover some of the available energy presently being lost.
- Find the ideal power generated for adiabatic reversible operations of the turbine, and the money recovered per 30 day month, if energy is worth 7\$/kWhr.

- The molar flow rate $\mathrm{n}=\frac{\mathrm{p} \mathrm{\dot{v}}}{R T}$
$\left.=\frac{(1013250)(0.020)}{(8.314)(30} 0\right)$
$=8.125 \mathrm{~mol} \cdot \mathrm{~s}^{-1}$
- For adiabatic reversible

$$
\begin{aligned}
& \frac{T_{2}}{T_{1}}=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{(k-1)}{k}} \\
& =300\left(\frac{1}{10}\right)^{\frac{0.4}{1.4}}=155 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\mathrm{W}}_{\text {rev }}=-\Delta \dot{\mathrm{H}} \\
& =-\dot{\mathrm{n}} \mathrm{c}_{\mathrm{p}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=34283 \mathrm{~W} \\
& =(34283 \mathrm{~W})\left(\frac{3600 \times 24 \times 30 \mathrm{~s}}{\text { month }}\right) \\
& \left(\frac{6.2778)^{6 W} \cdot \mathrm{hr}}{10^{6} \mathrm{~J}}\right)=\$ 1728 / \text { mont }
\end{aligned}
$$

- $T_{2}=155 \mathrm{~K}$, which is very cold, this leads us to suspect.
- How about a reversible isothermal expansion ?

$$
\begin{aligned}
& \dot{\mathrm{W}}_{\text {sh }}=-\dot{\mathrm{n} R} \operatorname{Tl} \ln \frac{\mathrm{p}_{2}}{\mathrm{p}_{1}} \\
& =-(8.125)(8.314)(300) \ln \frac{1}{10} \\
& =46662 \mathrm{~W} \\
& 46.6 / 34.2=1.36,36 \% \text { more. }
\end{aligned}
$$

Example III

- A Hilsch tube, a "tricky" device that splits a of high-pressure air ($p_{1}=1.5$ bar, $\mathrm{T}_{1}=27^{\circ} \mathrm{C}$) into two equimolar streams, one hot and one cold, both at lower pressure ($\left.p_{2}=p_{3}=1 \mathrm{bar}\right)$. The salesman claims that the cold air is at $-123^{\circ} \mathrm{C}$. I don't believe that the air could get that cold with so simple a device. Would you please determine whether his claim violates the laws of thermodynamics.

- From the $1^{\text {st }}$ law,

$$
\begin{aligned}
& \mathrm{n}_{1} \mathrm{~h}_{1}=\mathrm{n}_{2} \mathrm{~h}_{2}+\mathrm{n}_{3} \mathrm{~h}_{3} \\
& \mathrm{n}_{1} \mathrm{c}_{\mathrm{p}} \mathrm{~T}_{1}=\mathrm{n}_{2} \mathrm{c}_{\mathrm{p}} \mathrm{~T}_{2}+\mathrm{n}_{3} \mathrm{c}_{\mathrm{p}} \mathrm{~T}_{3} \\
& 2(200)=1(150)+1\left(\mathrm{~T}_{3}\right), \quad \mathrm{T}_{3}=450
\end{aligned}
$$

- From the second law,

$$
\begin{aligned}
& \Delta S_{\text {total }}=\Delta S_{\text {cold side }}+\Delta S_{\text {hot side }} \\
& =\left[n_{2} c_{p} \ln \frac{T_{2}}{T_{1}}-n_{2} R \ln \frac{p_{2}}{p_{1}}\right\rfloor+\left[n_{3} c_{p} \ln \frac{T_{3}}{T_{1}}-n_{3} R \ln \frac{p_{3}}{p_{1}}\right\rfloor
\end{aligned}
$$

$$
\Delta S_{\text {total }}=\Delta S_{\text {cold side }}+\Delta S_{\text {hot side }}
$$

$$
\begin{aligned}
& =\left[29.1 \ln \frac{150}{300}-8.314 \ln \frac{1}{1.5}\right]+\left[29.1 \ln \frac{450}{300}-8.314 \ln \frac{1}{1.5}\right] \\
& =-1.63 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}<0
\end{aligned}
$$

ENTROPY OF ENGINEERING FLUIDS

Property Diagrams

- Pressure- Temperature (P-T) diagrams
- Pressure-Specific Volume (P-v) diagrams
- Pressure-Enthalpy (P-h) diagrams
- Enthalpy-Temperature (h-T) diagrams
- Temperature-Entropy (T-s) diagrams
- Enthalpy-Entropy (h-s) or Mollier diagrams.

Pressure- Temperature (P-T) diagram

Pressure-Specific Volume (P-v) Diagram

Pressure-Enthalpy (P-h) Diagram

Enthalpy-Temperature (h-T) Diagram

Enthalpy-Entropy (h-s) or Mollier Diagram

- This chart is particularly useful in evaluating the work involved in an adiabatic reversible step of an engine because
- From $1^{\text {st }}$ law, $\Delta \mathrm{h}=\mathrm{w}$ (for adiabatic condition)
- From $2^{\text {nd }}$ law, $\Delta s=0$ (for adiabatic condition)
- Therefore, straight vertical line between $\mathrm{p}_{\text {high }}$ and $\mathrm{p}_{\text {low }}$ gives the work done, simply and directly for a machine.

Temperature-Entropy (T-s) Diagram

$$
\begin{aligned}
\Delta \mathrm{S} & =\int \frac{\mathrm{dQ}}{\mathrm{rev}} \\
& =\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{\mathrm{mc}_{\mathrm{p}} \mathrm{dT}}{\mathrm{~T}} \longleftarrow \\
& \begin{array}{ll}
\text { constant pressure } \\
\text { no phase change }
\end{array} \\
& \frac{\mathrm{m} \Delta \mathrm{~h}_{\mathrm{Ig}}}{\mathrm{~T}} \longleftarrow
\end{aligned}
$$

EMO@

- Find the work needed to compress adiabatically and reversibly to 500 kPa a stream of saturated HFC- $\quad \mathrm{h}_{1}=374.3 \mathrm{~kJ} \mathrm{~kg}{ }^{-1} \mathrm{~s}_{1}=1.7655 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ 134a gas at $-40^{\circ} \mathrm{C}$
saturated

$$
\Delta \mathrm{S}=\int \frac{\mathrm{dQ}_{\mathrm{rev}}}{\mathrm{~T}}=0 \quad \text { or } \quad \mathrm{s}_{2}=\mathrm{s}_{1}
$$

$$
\text { HFC-134a } \quad P_{2}=500 \mathrm{kPa}
$$

$$
\begin{aligned}
& \mathrm{p}_{2}=500 \mathrm{kPa} \quad \text { and } \\
& \mathrm{s}_{2}=\mathrm{s}_{1}=1.7655 \quad \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

$$
\mathrm{T}_{2}=30{ }^{\circ} \mathrm{C} \quad \mathrm{v}_{2}=0.04434 \quad \mathrm{~m}^{3} \mathrm{~kg}^{-1}
$$

$$
\mathrm{h}_{2}=421.3 \mathrm{~kJ} \mathrm{~kg}^{-1}
$$

adiabatic

$$
\begin{aligned}
& \mathrm{p}_{1}=51.14 \mathrm{kPa} \quad \mathrm{v}_{1}=0.3614 \mathrm{~m}^{3} \mathrm{~kg}^{-1} \\
& \mathrm{~h}_{1}=374.3 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~s}_{1}=1.7655 \quad \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

$$
-w_{\text {sh }}=h_{2}-h_{1}=47 \mathrm{~kJ} \mathrm{~kg}^{-1}
$$

Example II

WORK FROM HEAT

The Carnot heat engine

- Sadi Carnot wrestled with the problem of finding the maximum efficiency of a heat engine. He cracked this problem by brilliant deductive reasoning, but no experimenting or tinkering with real steam engines.
- Carnot did this analysis and gave a mathematical representation of the $2^{\text {nd }}$ law in 1811 , long before the $1^{\text {st }}$ law was clarified and properly expressed (about 1840 to 1850). Shouldn't the $2^{\text {nd }}$ law be called the $1^{\text {st }}$ law and vice versa?
- Carnot's analysis let to the concept of entropy.
- Consider a "heat engine" does only three kinds of operations
- The absorption of heat from a hot constant temperature reservoir, at T_{1}
- The removal of heat to a cold temperature sink at T_{2}
- Doing work or receiving work

- The former one call Carnot heat engine, latter one call Carnot heat pump.
- Theorem 1. All reversible heat engines operation between the same two temperatures, T_{1} and T_{2} must have the same efficiency.
- Proof. Let us assume the contradictory, the following two reversible engines have different efficiencies,

say $\eta_{1}=56 \%, \eta_{2}=50 \%$. Reverse the second and interconnect,

- Theorem 2. Reversible heat engines have the highest efficiency between any two temperatures.
- Proof. Assume that the irreversible engine has the higher efficiency,

say $\eta_{1}=67 \%, \eta_{2}=50 \%$. Reverse the second and interconnect,

- Theorem 3. For the same high temperature T_{1}, the engine that the larger ΔT has the higher efficiency and produces more work.
- Proof. $W_{3}=W_{1}+W_{2} \geq W_{1}$.

The kelvin temperature scale

- Kelvin derived a temperature scale not based on the expansion of gases or liquids, but based on Carnot's heat engines. Consider a series of Carnot engines, each producing the same amount of work, say 10 units, as in the figure.
- and

- Therefore,

$$
\begin{aligned}
& \frac{|W|}{\left|W_{1}\right|}=\frac{\left|Q_{1}\right|-\left|Q_{2}\right|}{\left|Q_{1}\right|}=1-\frac{\left|Q_{2}\right|}{\left|Q_{1}\right|}=1-\frac{T_{2}^{\prime}}{T_{1}^{\prime}}=\frac{T_{1}^{\prime}-T_{2}^{\prime}}{T_{1}^{\prime}} \\
& \frac{|W|}{\left|Q_{2}\right|}=\frac{T_{1}^{\prime}-T_{2}^{\prime}}{T_{2}^{\prime}} \text { or } \frac{\left|Q_{2}\right|}{\left|Q_{1}\right|}=\frac{T_{2}^{\prime}}{T_{1}^{\prime}}
\end{aligned}
$$

- This temperature scale is measured in terms of work and heat in a Carnot engine, and is known as Kelvin work scale, T^{\prime}.
- This scale is defined and derived straight from thermodynamics, no reason to suspect that it has anything to do with our arbitrary scales, Fahrenheit, Celsius, ...
- Fahrenheit temperature scale
- $0^{\circ} \mathrm{F}$ was established as the temperature of a solution of "brine" made from equal parts of ice, water and salt (ammonium chloride)
- $32^{\circ} \mathrm{F}$ as melting point of ice
- $96^{\circ} \mathrm{F}$ as the average human body temperature
- In this scale the boiling point of water is defined to be $212^{\circ} \mathrm{F}, 180^{\circ} \mathrm{F}$ separation.

Carnot cycle revisit

Let us take one mole of an ideal gas, put it in a cylinder with piston and operate it in a four-step cycle as a Carnot engine.

- AB : isothermal expansion at T_{1}
- BC: adiabatic reversible expansion
- CD: isothermal contraction at T_{2}
- DA: adiabatic reversible contraction back to A.

For ideal gas

- AB : isothermal expansion at T_{1}

$$
\left|w_{1}\right|=\left|q_{1}\right|=R T_{1} \ln \frac{p_{A}}{p_{B}}
$$

- BC: adiabatic reversible expansion
- CD: isothermal contraction at T_{2}

$$
\left|w_{2}\right|=\left|q_{2}\right|=R T_{2} \ln \frac{p_{C}}{p_{D}}
$$

- DA: adiabatic reversible contraction back to A.
- For the adiabatic reversible

$$
\begin{aligned}
& |w|=c_{v}\left(T_{1}-T_{2}\right) \\
& \begin{array}{l}
\left.\frac{p_{A}}{p_{D}}=\left(\frac{T_{1}}{T_{2}}\right)^{\frac{k}{k-1}}{ }^{\frac{p_{B}}{p_{C}}=\left(\frac{T_{1}}{T_{2}}\right)^{\frac{k}{k-1}}}\right\} \quad \text { or } \frac{p_{A}}{p_{B}}=\frac{p_{D}}{p_{C}}
\end{array}
\end{aligned}
$$

For the four step cycle,

$$
\begin{aligned}
& R\left(T_{1}-T_{2}\right) \ln \underline{p_{B}} \\
& =\frac{\mathrm{p}_{\mathrm{A}}}{\mathrm{RT}{ }_{1} \ln \frac{\mathrm{p}_{\mathrm{B}}}{\mathrm{p}_{\mathrm{A}}}}=\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1}}
\end{aligned}
$$

This shows that the ideal gas temperature scale is equivalent to the Kelvin work scale, That $\mathrm{T}=\mathrm{T}^{\prime}$.

Because Kelvin made this discovery, we name our absolute temperature scale in his honor.

- For the heat lost from our Carnot engine, -Q ,

$$
\begin{aligned}
& \text { Kelvin } \\
& \text { work scale }
\end{aligned} \frac{-Q_{2}}{Q_{1}}=\frac{T_{2}}{T_{1}} \text { or } \frac{Q_{2}}{T_{2}}+\frac{Q_{1}}{T_{1}}=0
$$

- For any reversible Carnot engine that uses any number of sources and sinks,

$$
\frac{Q_{1}}{T_{1}}+\frac{Q_{2}}{T_{2}}+\frac{Q_{3}}{T_{3}}+\cdots=0
$$

- Or
- This quantity always enters incyclical reversible processes, it represents a change in a property of the system as is the enthalpy or internal energy change. This is entropy change, $\Delta \mathrm{S}$. Carnot's !

T-s diagram of Carnot engine

$\mathrm{s}, \mathrm{J} / \mathrm{mol} / \mathrm{K}$

THE IDEAL OR REVERSIBLE HEAT PUMP

Coefficient of performance, COP

$$
\begin{aligned}
& \text { cop }=\frac{\left|\mathrm{Q}_{2}\right|}{|\mathrm{W}|}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}-\mathrm{T}_{2}} \text { refrigerat ion } \\
& \text { cop' }^{\prime}=\frac{\left|\mathrm{Q}_{2}\right|}{|\mathrm{W}|}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{1}-\mathrm{T}_{2}} \text { heater }
\end{aligned}
$$

Example

- 100 kg of water at $100^{\circ} \mathrm{C}$ furnishes heat to a Carnot engine that discards heat to a sink consisting of 100 kg of cold water at $0^{\circ} \mathrm{C}$. Source cools, sink heats, and eventually both end at the same temperature.

Calculate

1. The final temperature of the 200 kg of water
2. The work obtainable

- If we just cooled the hot water with the cold without doing work,

$$
\begin{aligned}
& \Delta H_{\text {hot }}+\Delta H_{\text {cold }}=0 \\
& m_{\text {hot }} c_{p}\left(T_{f}-T_{1}\right)+m_{\text {cold }} c_{p}\left(T_{f}-T_{2}\right)=0 \\
& 100\left(100-T_{f}\right)+100\left(0-T_{f}\right)=0 \\
& T_{f}=\frac{10000}{200}=50^{\circ} \mathrm{C}
\end{aligned}
$$

- With work withdraw,

$$
\begin{aligned}
\Delta S_{\text {total }} & =\Delta S_{\text {hot }}+\Delta S_{\text {cold }}=0 \\
\Delta S_{\text {hot }} & =\int_{T_{1}}^{T_{f}} \frac{m c_{p} d T}{T}=m_{\text {hot }} c_{p} \ln \frac{T_{f}}{373} \\
\Delta S_{\text {cold }} & =\int_{T_{2}}^{T_{f}} \frac{m c_{p} d T}{T}=m_{\text {cold }} c_{p} \ln \frac{T_{f}}{273}
\end{aligned}
$$

$$
\begin{aligned}
& m_{\text {hot }} c_{p} \ln \frac{T_{f}}{373}+m_{\text {cold }} c_{p} \ln \frac{T_{f}}{273}=0 \\
& T_{f}=\sqrt{(273)(373)}=319 \mathrm{~K}=46{ }^{\circ} \mathrm{C}
\end{aligned}
$$

- Work done is the energy lost in going from $50^{\circ} \mathrm{C}$ to $46^{\circ} \mathrm{C}$.

$$
\mathrm{W}=\mathrm{mc}{ }_{\mathrm{p}}(50-46)=200(4184)(4)=3.347 \times 10^{6} \mathrm{~J}
$$

