Ideal Gases and the 2nd Law

(Understanding Engineering Thermo—Octave Levenspiel)

Min Huang, PhD Chemical Engineering Tongji University

BATCH OF IDEAL GAS

• Recall the 1st and 2nd law,

$$dE = dQ + dW$$

$$dS = (1/T)dE - (f/T) \cdot dX$$

• therefore,

$$\Delta S = \int \frac{dQ_{rev}}{T}$$

• Constant volume process

$$W_{rev} = 0, \quad Q = \Delta U$$
$$\Delta S = \int \frac{dQ_{rev}}{T} = \int \frac{nc_v dT}{T} = nc_v ln \quad \frac{T_2}{T_1} = nc_v ln \quad \frac{p_2}{p_1}$$

• Constant pressure process

$$w_{rev} = \int p dv = p \Delta v = n R \Delta T$$
$$\Delta U = n c_v \Delta T$$

$$Q_{rev} = \Delta U + W_{rev} = nc_v \Delta T + nR \Delta T = nc_p \Delta T$$

$$\Delta S = \int \frac{dQ_{rev}}{T} = \int \frac{nc_{p}dT}{T} = nc_{p}ln \frac{T_{2}}{T_{1}} = nc_{p}ln \frac{v_{2}}{v_{1}}$$
$$W_{rev} = nR(T_{2} - T_{1})$$

• Constant temperature process

$$Q_{rev} = w_{rev} = \int p \, dv$$
$$dQ_{rev} = p \, dv = \frac{n R T}{V} \, dv$$

$$\Delta S = \int \frac{dQ_{rev}}{T} = \int \frac{nRT}{vT} dv = nRln \quad \frac{v_2}{v_1} = -nRln \quad \frac{p_2}{p_1}$$
$$W_{rev} = -nRln \quad \frac{p_2}{p_1}$$

- Going from $p_1 v_1 T_1$ to $p_2 v_2 T_2$ in general
 - Constant p_1 , T_1 to T_2 - Constant T_2 , p_1 to p_2 This is specific, why ?
- Recall

$$\Delta S = \int \frac{dQ_{rev}}{dT} = \int \frac{nc_{p}dT}{T} = nc_{p}ln \frac{T_{2}}{T_{1}} = nc_{p}ln \frac{v_{2}}{v_{1}}$$

$$\Delta S = \int \frac{dQ_{rev}}{dT} = \int \frac{nRT}{vT} dv = nRln \frac{v_{2}}{v_{1}} = -nRln \frac{p_{2}}{p_{1}}$$
Const T

• Therefore,

$$\Delta S = nc_{p} ln \frac{T_{2}}{T_{1}} - nR ln \frac{p_{2}}{p_{1}} \qquad \Delta S = nc_{v} ln \frac{T_{2}}{T_{1}} + nR ln \frac{v_{2}}{v_{1}}$$
$$\Delta S = nc_{v} ln \frac{p_{2}}{p_{1}} + nc_{p} ln \frac{v_{2}}{v_{1}}$$

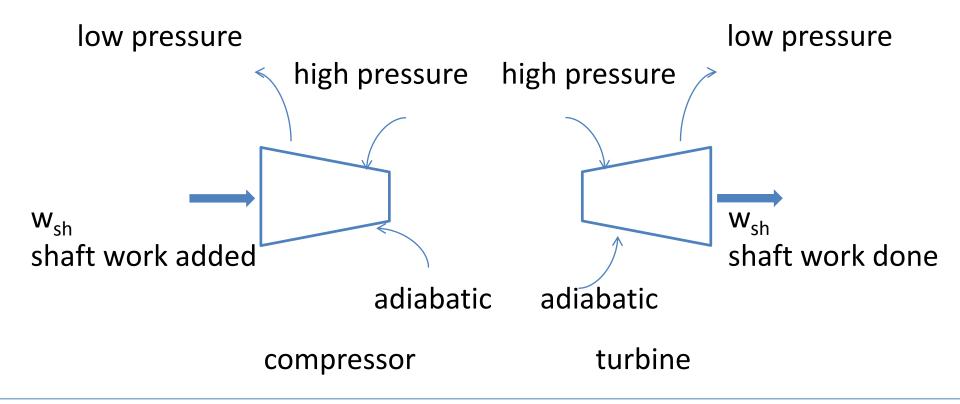
- Reversible work
- Going from p₁ T₁ to p₂ T₂, one can take various paths, two are as follow,
 - Constant p_1 , T_1 to T_2 + Constant T_2 , p_1 to p_2
 - Constant T_1 , p_1 to p_2 + Constant p_2 , T_1 to T_2

$$W_{1+2} = nR(T_2 - T_1) - nRT_2ln\frac{p_2}{p_1}$$
$$W_{3+4} = -nRT_1ln\frac{p_2}{p_1} + nR(T_2 - T_1)$$

– they are clearly different—path dependent ! So is the heat !

- However,
$$\Delta S = \int \frac{dQ_{rev}}{dT}$$
 is independent of the path taken

Adiabatic reversible processes (Q = 0; (S = 0))



- From 1^{st} law $q_{actual} = 0$
- And flow systems $w_{sh} = \Delta h + \Delta e_{p} + \Delta e_{k}$

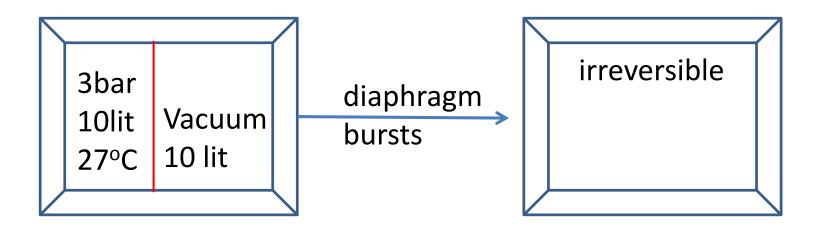
• From 2nd law

$$\Delta s = \int \frac{dq_{rev}}{T} = 0$$

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{(k-1)}{k}}$$

Example I

- Rupture of a diaphragm in an insulated tank
- Find ΔS for this process



- From the 1^{st} law, Q = 0 and W = 0
- Therefore $\Delta U = 0$, so for ideal gas, $T_{final} = 300$ K, V_{fina} = 20 lit, $p_{final} = 1.5$ bar and n = 1.2 mol

$$Q_{rev} = W_{rev} = nRTIn \frac{V_{final}}{V_{initial}}$$

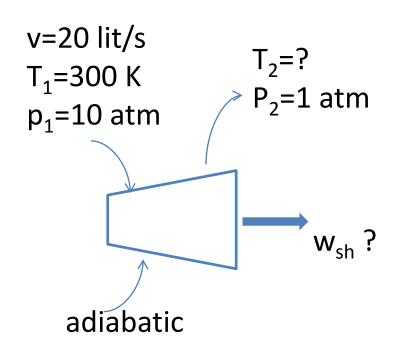
$$\Delta S = \int \frac{dQ_{rev}}{dT} = nRIn \frac{V_{final}}{V_{initial}}$$

$$= (1.2mol) \left(8.314 \frac{J}{mol + K} \right) \ln \frac{20}{10} = 6.92 JK^{-1}$$

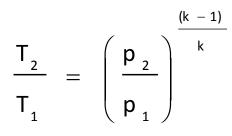
 Q_{actual} = 0 because the process is adiabatic and irreversible. We had to devise a reversible path and use the Q_{rev} for ΔS. Q_{rev} ≠ 0.

Example II

- Making money from wasted air
- Presently, high-pressure air (v=20 lit/s, T=300 K, p=10 atm) is vented to one atmosphere.
- We considering installing a turbine with an electricity generator to recover some of the available energy presently being lost.
- Find the ideal power generated for adiabatic reversible operations of the turbine, and the money recovered per 30 day month, if energy is worth 7¢/kWhr.



• For adiabatic reversible



 $= 300 \left(\frac{1}{10}\right)^{1.4}$

=	155	к
)

h

• The molar flow rate

n =
$$\frac{p \dot{v}}{RT}$$

= $\frac{(1013250)(0.020)}{(8.314)(30 0)}$
= $8.125 \text{ mol } \cdot \text{ s}^{-1}$

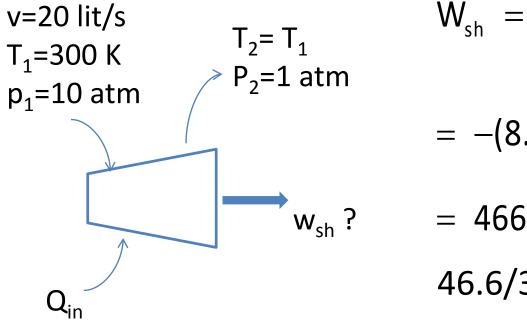
$$\dot{W}_{rev} = -\Delta \dot{H}$$

= $-\dot{n} c_p (T_2 - T_1) = 34283 W$

0.4

$$= (34283 \text{ W}) \left(\frac{3600 \times 24 \times 30 \text{ s}}{\text{month}} \right)$$
$$\left(\frac{0.2778 \text{ kW} \cdot \text{hr}}{10^6 \text{ J}} \right) = \$1728/\text{mont}$$

- $T_2=155$ K, which is very cold, this leads us to suspect.
- How about a reversible isothermal expansion ?



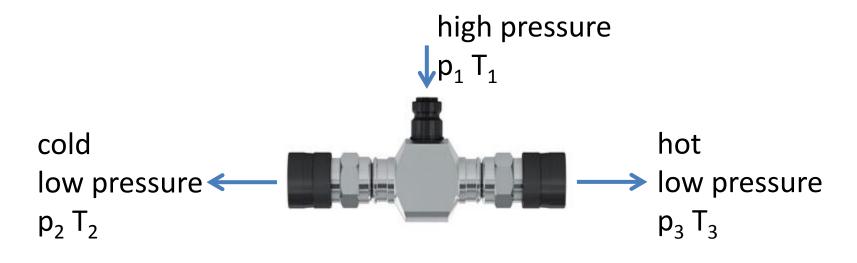
$$\dot{W}_{sh} = -\dot{n}RTIn \frac{p_2}{p_1}$$

= -(8.125)(8.314)(300) In $\frac{1}{10}$
= 46662 W

46.6/34.2=1.36, 36% more.

Example III

 A Hilsch tube, a "tricky" device that splits a of high-pressure air (p₁=1.5 bar, T₁=27°C) into two equimolar streams, one hot and one cold, both at lower pressure (p₂=p₃=1 bar). The salesman claims that the cold air is at -123°C. I don't believe that the air could get that cold with so simple a device. Would you please determine whether his claim violates the laws of thermodynamics.



• From the 1st law,

$$n_{1}h_{1} = n_{2}h_{2} + n_{3}h_{3}$$

$$n_{1}c_{p}T_{1} = n_{2}c_{p}T_{2} + n_{3}c_{p}T_{3}$$

$$2(200) = 1(150) + 1(T_{3}), \quad T_{3} = 450$$

• From the second law,

$$\Delta S_{total} = \Delta S_{cold side} + \Delta S_{hot side}$$

$$= \left[n_{2}c_{p}\ln \frac{T_{2}}{T_{1}} - n_{2}R\ln \frac{p_{2}}{p_{1}} \right] + \left[n_{3}c_{p}\ln \frac{T_{3}}{T_{1}} - n_{3}R\ln \frac{p_{3}}{p_{1}} \right]$$

$$\Delta S_{total} = \Delta S_{cold side} + \Delta S_{hot side}$$

$$= \left[29.1\ln \frac{150}{300} - 8.314 \ln \frac{1}{1.5} \right] + \left[29.1\ln \frac{450}{300} - 8.314 \ln \frac{1}{1.5} \right]$$

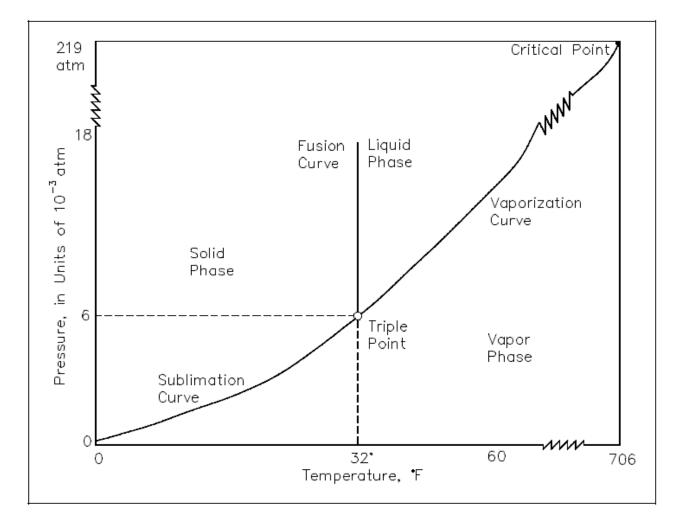
$$= -1.63 \text{ Jmol}^{-1}K^{-1} < 0$$

ENTROPY OF ENGINEERING FLUIDS

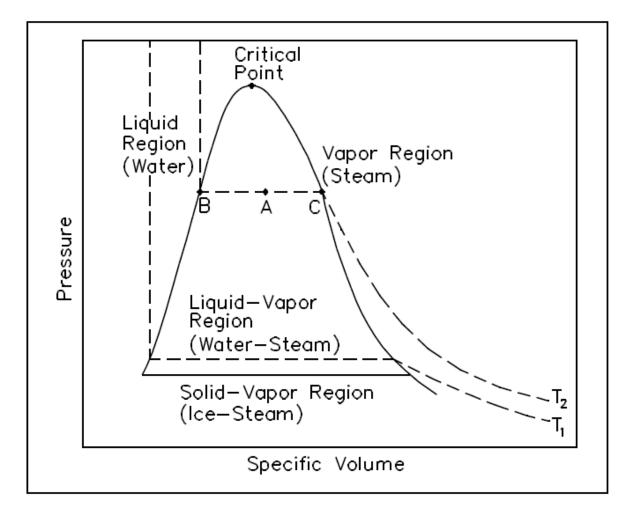
Property Diagrams

- Pressure- Temperature (P-T) diagrams
- Pressure-Specific Volume (P-v) diagrams
- Pressure-Enthalpy (P-h) diagrams
- Enthalpy-Temperature (h-T) diagrams
- Temperature-Entropy (T-s) diagrams
- Enthalpy-Entropy (h-s) or Mollier diagrams.

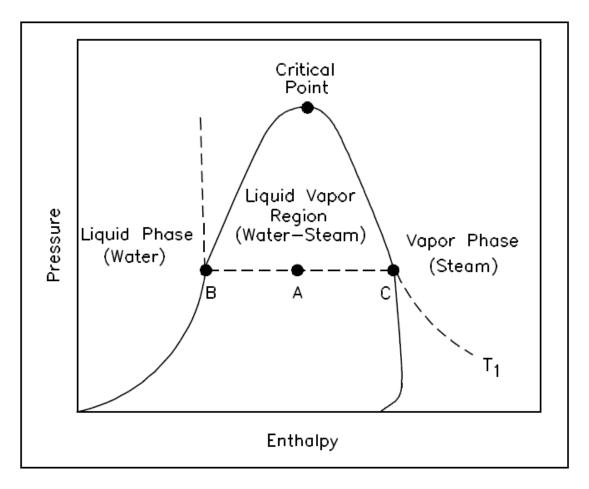
Pressure- Temperature (P-T) diagram



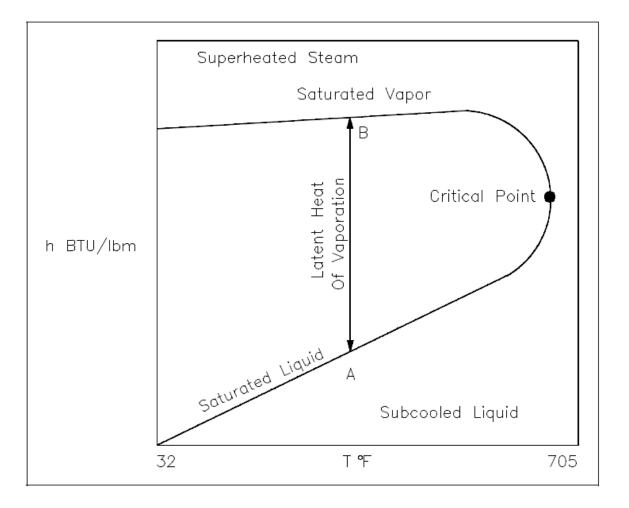
Pressure-Specific Volume (P-v) Diagram



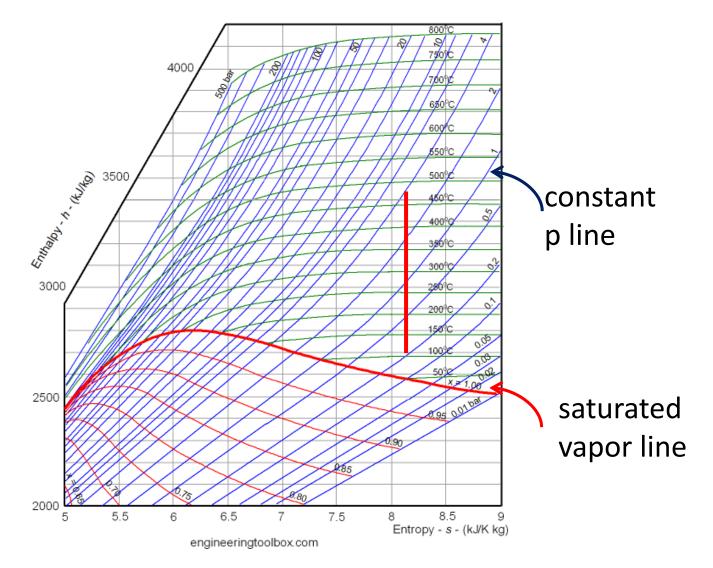
Pressure-Enthalpy (P-h) Diagram



Enthalpy-Temperature (h-T) Diagram

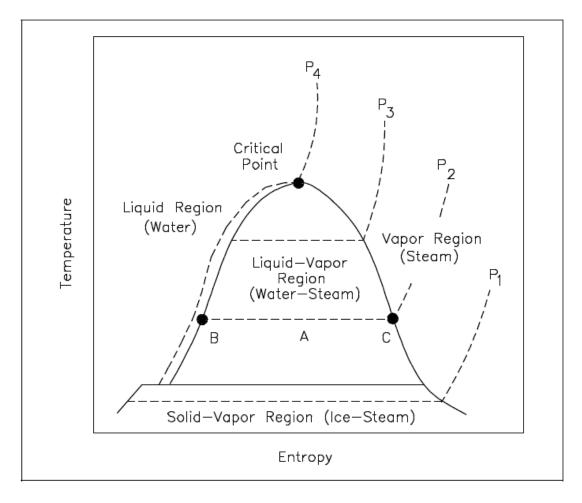


Enthalpy-Entropy (h-s) or Mollier Diagram



- This chart is particularly useful in evaluating the work involved in an adiabatic reversible step of an engine because
- From 1st law, $\Delta h=w$ (for adiabatic condition)
- From 2^{nd} law, $\Delta s=0$ (for adiabatic condition)
- Therefore, straight vertical line between p_{high} and p_{low} gives the work done, simply and directly for a machine.

Temperature-Entropy (T-s) Diagram



$$\Delta S = \int \frac{dQ}{T}_{rev} \left[JK^{-1} \right]$$

$$= \int_{\tau_1}^{\tau_2} \frac{mc_{\rho} dT}{T} \quad \longleftarrow \quad \begin{array}{c} \text{constant pressure} \\ \text{no phase change} \end{array}$$

$$= \frac{m \Delta h_{lg}}{T} \quad \longleftarrow \quad \begin{array}{c} \text{a phase change} \\ \text{at T} \end{array}$$

Example I

 Find the work needed to compress adiabatically and reversibly to 500 kPa a stream of saturated HFC-134a gas at -40°C

saturated
HFC-134a
$$P_2=500$$
 kPa
 $T_1=-40^{\circ}C$ $-W_{sh}$ $diabatic$

$$- w_{sh} = (h_2 - h_1) - q^{-1}$$

$$p_1 = 51.14 \quad kPa \qquad v_1 = 0.3614 \quad m^3 kg^{-1}$$

$$h_1 = 374.3 \quad kJ \ kg^{-1} \ s_1 = 1.7655 \quad kJ \ kg^{-1} K^{-1}$$

$$\Delta S = \int \frac{dQ}{T}_{rev} = 0 \text{ or } s_2 = s_1$$

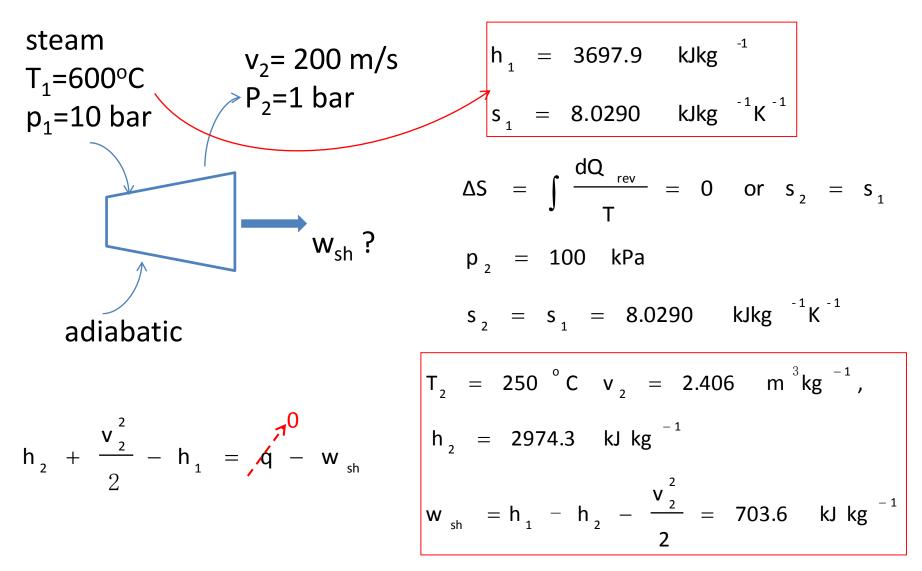
$$p_2 = 500 \text{ kPa and}_{s_2} = s_1 = 1.7655 \text{ kJ kg}^{-1} \text{K}^{-1}$$

$$T_2 = 30 \text{ }^{\circ}\text{C} \text{ } v_2 = 0.04434 \text{ m}^{3}\text{kg}^{-1},$$

$$h_2 = 421.3 \text{ kJ kg}^{-1}$$

$$- w_{sh} = h_2 - h_1 = 47 \text{ kJ kg}^{-1}$$

Example II

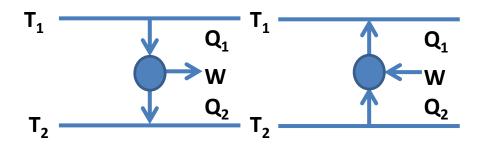


WORK FROM HEAT

The Carnot heat engine

- Sadi Carnot wrestled with the problem of finding the maximum efficiency of a heat engine. He cracked this problem by brilliant deductive reasoning, but no experimenting or tinkering with real steam engines.
- Carnot did this analysis and gave a mathematical representation of the 2nd law in 1811, long before the 1st law was clarified and properly expressed (about 1840 to 1850). Shouldn't the 2nd law be called the 1st law and vice versa ?
- Carnot's analysis let to the concept of entropy.

- Consider a "heat engine" does only three kinds of operations
 - The absorption of heat from a hot constant temperature reservoir, at T_1
 - The removal of heat to a cold temperature sink at T₂
 - Doing work or receiving work



• The former one call Carnot heat engine, latter one call Carnot heat pump.

- Theorem 1. All reversible heat engines operation between the same two temperatures, T₁ and T₂ must have the same efficiency.
- **Proof**. Let us assume the contradictory, the following two reversible engines have different efficiencies,

$$T_{1} \qquad Q_{1}=90^{T_{1}} \qquad Q_{1}=100 (90)$$

$$W=50 (45) \qquad W=50$$

$$Q_{2}=40 (45) \qquad Q_{2}=50$$
say $\eta_{1}=56\%$, $\eta_{2}=50\%$. Reverse the second and interconnect,

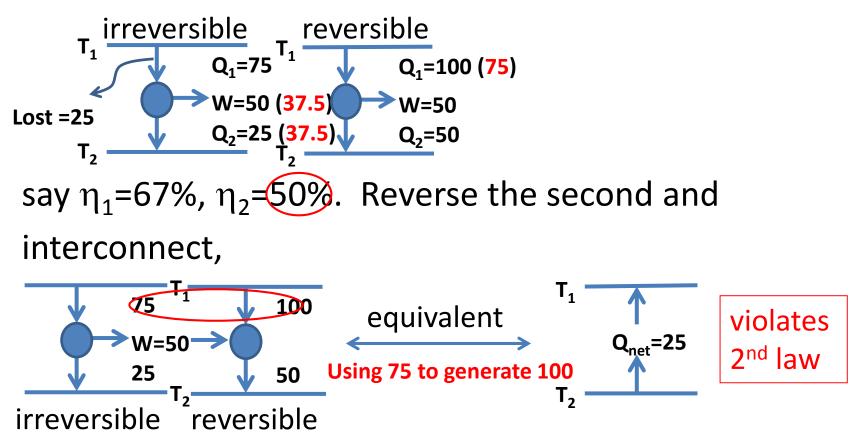
$$M=50, \eta_{2}=50\%$$
. Reverse the second and interconnect,

$$M=50, \eta_{2}=50\%$$

$$W=50, \eta_{2}=50\%$$
. Reverse the second and interconnect,

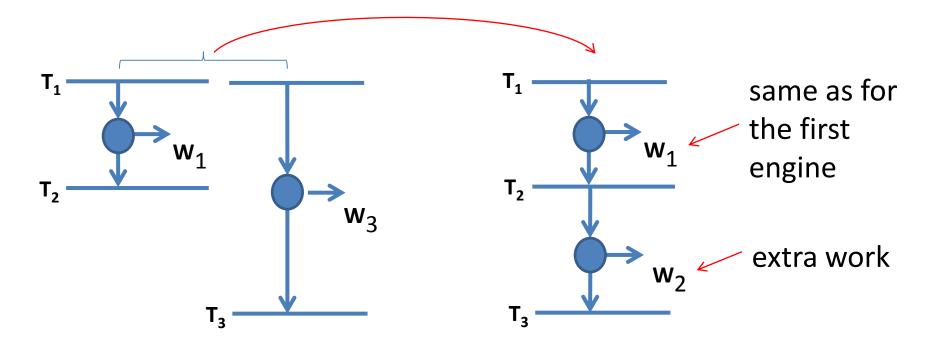
$$M=50, \eta_{2}=50\%$$
. Reverse the second and the second and the second and the second and the second and

- Theorem 2. Reversible heat engines have the highest efficiency between any two temperatures.
- **Proof**. Assume that the irreversible engine has the higher efficiency,

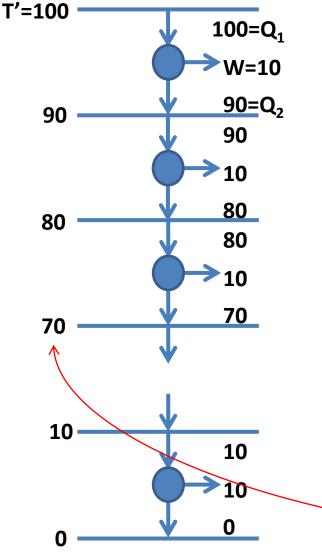


• Theorem 3. For the same high temperature T_1 , the engine that the larger ΔT has the higher efficiency and produces more work.

• **Proof.**
$$W_3 = W_1 + W_2 \ge W_1$$
.



The kelvin temperature scale



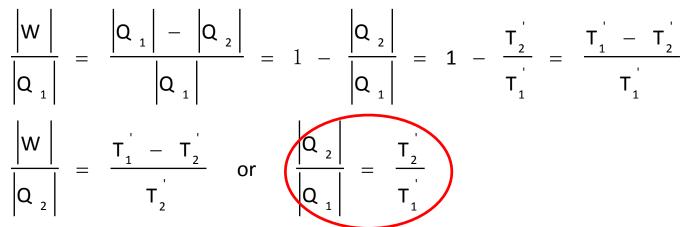
Kelvin derived a temperature scale not based on the expansion of gases or liquids, but based on Carnot's heat engines. Consider a series of Carnot engines, each producing the same amount of work, say 10 units, as in the figure.

 $\frac{f_2}{f_2} =$

and

 $T_1 \propto Q_1$ and

• Therefore,

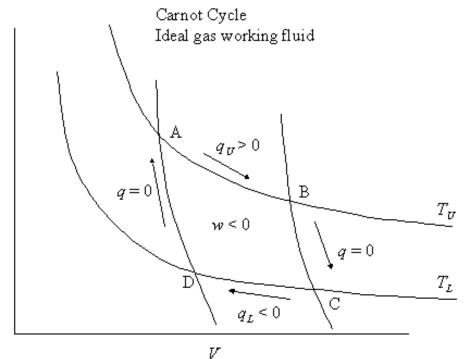


- This temperature scale is measured in terms of work and heat in a Carnot engine, and is known as Kelvin work scale, T'.
- This scale is defined and derived straight from thermodynamics, no reason to suspect that it has anything to do with our arbitrary scales, Fahrenheit, Celsius, ...

- Fahrenheit temperature scale
- 0° F was established as the temperature of a solution of "brine" made from equal parts of ice, water and salt (ammonium chloride)
- 32° F as melting point of ice
- 96° F as the average human body temperature
- In this scale the boiling point of water is defined to be 212° F, 180° F separation.

Carnot cycle revisit

Let us take one mole of an ideal gas, put it in a cylinder with piston and operate it in a four-step cycle as a Carnot engine.



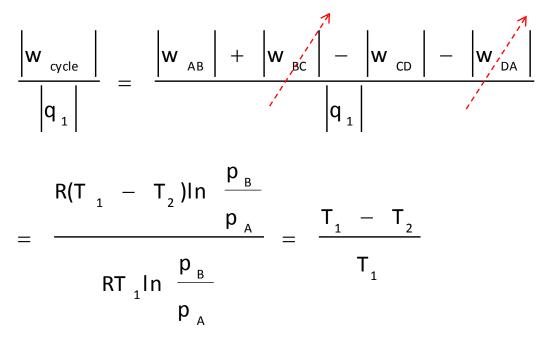
р

- AB: isothermal expansion at T₁
- BC: adiabatic reversible expansion
- CD: isothermal contraction at T₂
- DA: adiabatic reversible contraction back to A.

For ideal gas

- AB: isothermal expansion at T₁
- BC: adiabatic reversible expansion
- CD: isothermal contraction at T₂
- DA: adiabatic reversible contraction back to A.

- $|w_1| = |q_1| = RT_1 ln \frac{\mu_A}{m}$ $|w| = c_v (T_2 - T_1)$ $|\mathbf{w}_2| = |\mathbf{q}_2| = \mathbf{RT}_2 \ln \frac{\mathbf{p}_C}{\mathbf{m}}$ $|\mathbf{w}| = \mathbf{c}_{\mathbf{v}} (\mathbf{T}_{1} - \mathbf{T}_{2})$ $\frac{p_{A}}{p_{D}} = \begin{pmatrix} T_{1} \\ T_{2} \end{pmatrix}^{\frac{k}{k-1}} \\ k \\ \frac{p_{B}}{p_{C}} = \begin{pmatrix} T_{1} \\ T_{2} \end{pmatrix}^{\frac{k}{k-1}} \\ k \\ \frac{p_{B}}{p_{C}} = \begin{pmatrix} T_{1} \\ T_{2} \end{pmatrix}^{\frac{k}{k-1}} \\ k \\ \frac{p_{B}}{p_{C}} = \begin{pmatrix} T_{1} \\ T_{2} \end{pmatrix}^{\frac{k}{k-1}} \\ k \\ \frac{p_{B}}{p_{C}} = \begin{pmatrix} T_{1} \\ T_{2} \end{pmatrix}^{\frac{k}{k-1}} \\ k \\ \frac{p_{B}}{p_{C}} = \begin{pmatrix} T_{1} \\ T_{2} \end{pmatrix}^{\frac{k}{k-1}} \\ k \\ \frac{p_{B}}{p_{C}} = \begin{pmatrix} T_{1} \\ T_{2} \end{pmatrix}^{\frac{k}{k-1}} \\ k \\ \frac{p_{B}}{p_{C}} = \begin{pmatrix} T_{1} \\ T_{2} \end{pmatrix}^{\frac{k}{k-1}} \\ \frac{p_{B}}{p_{C}}$
- For the adiabatic reversible



This shows that the ideal gas temperature scale is equivalent to the Kelvin work scale, That T = T'.

Because Kelvin made this discovery, we name our absolute temperature scale in his honor.

• For the heat lost from our Carnot engine, -Q,

Kelvin
work scale
$$-$$
 Q $_2$
Q $_1$ $=$ $\frac{T_2}{T_1}$ or $\frac{Q_2}{T_2}$
T $_2$ $=$ 0
T $_1$

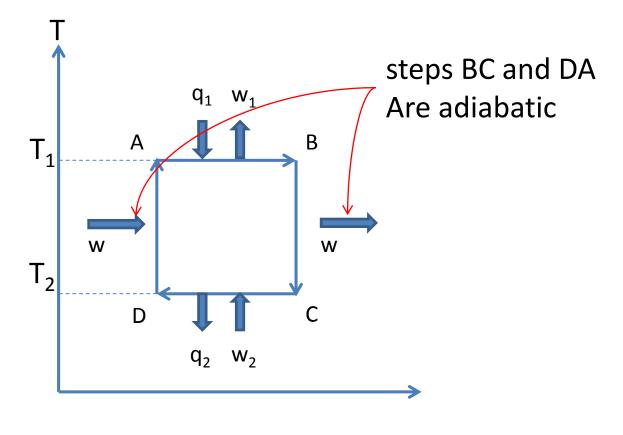
• For any reversible Carnot engine that uses any number of sources and sinks,

• Or
$$\frac{Q_{1}}{T_{1}} + \frac{Q_{2}}{T_{2}} + \frac{Q_{3}}{T_{3}} + \cdots = 0$$

$$\sum_{i=1}^{n} \frac{Q_{i}}{T_{i}} = 0 \text{ or } \int \frac{Q_{rev}}{T} = 0$$

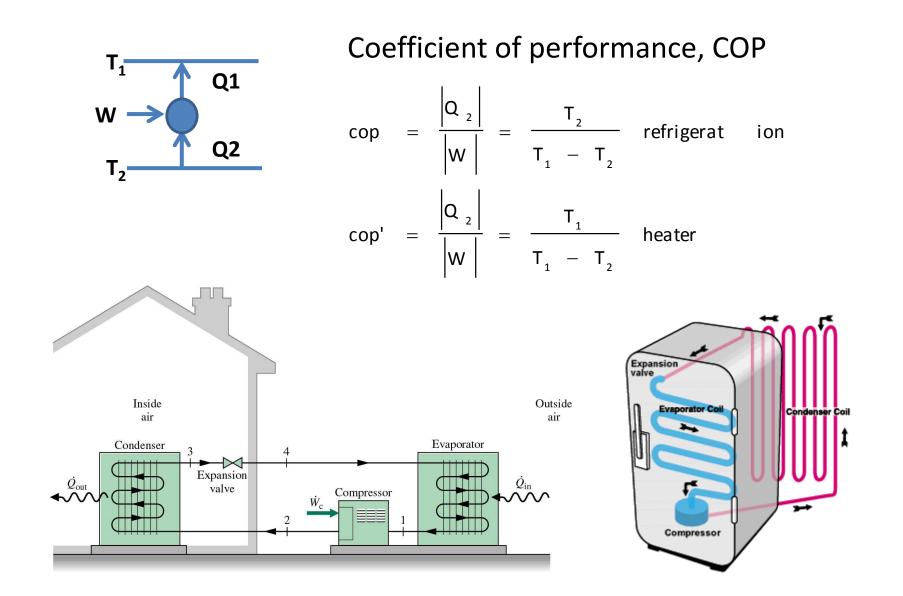
This quantity always enters in cyclical reversible processes, it represents a change in a property of the system as is the enthalpy or internal energy change. This is entropy change, ΔS. Carnot's !

T-s diagram of Carnot engine



s, J/mol/K

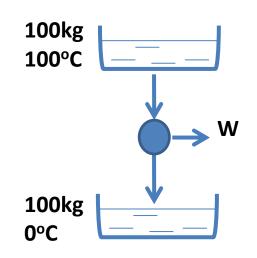
THE IDEAL OR REVERSIBLE HEAT PUMP



Example

 100 kg of water at 100°C furnishes heat to a Carnot engine that discards heat to a sink consisting of 100 kg of cold water at 0°C. Source cools, sink heats, and eventually both end at the same temperature.

Calculate



- The final temperature of the 200 kg of water
- 2. The work obtainable

• If we just cooled the hot water with the cold without doing work,

$$\Delta H_{hot} + \Delta H_{cold} = 0$$

$$m_{hot} c_{p} (T_{f} - T_{1}) + m_{cold} c_{p} (T_{f} - T_{2}) = 0$$

$$100(100 - T_{f}) + 100(0 - T_{f}) = 0$$

$$T_{f} = \frac{10000}{200} = 50^{\circ} C$$

• With work withdraw,

$$\Delta S_{total} = \Delta S_{hot} + \Delta S_{cold} = 0$$

$$\Delta S_{hot} = \int_{T_1}^{T_f} \frac{mc_p dT}{T} = m_{hot} c_p ln \frac{T_f}{373}$$

$$\Delta S_{cold} = \int_{T_2}^{T_f} \frac{mc_p dT}{T} = m_{cold} c_p ln \frac{T_f}{273}$$

$$m_{hot} c_{p} \ln \frac{T_{f}}{373} + m_{cold} c_{p} \ln \frac{T_{f}}{273} = 0$$
$$T_{f} = \sqrt{(273)(373)} = 319 \text{ K} = 46 \text{ }^{\circ} \text{ C}$$

 Work done is the energy lost in going from 50°C to 46°C.

W = mc
$$_{p}$$
 (50 - 46) = 200(4184)(4) = 3.347 × 10 6 J