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• Summary
• References



Recap Mixture/solution
• From the definition 

of chemical 
potential,

• we introduced 
partial molar 
property 

• This allow the 
calculation of 
mixture properties 
at a small deviation 
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Recap Mixture/solution

• A partial molar property (other than 
volume) of a constituent species in an ideal-
gas mixture is equal to the corresponding 
molar property of the species as a pure ideal 
gas at the mixture temperature but at a 
pressure equal to its partial pressure in the 
mixture.

• This leads to
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Recap Mixture/solution
• Gibbs free energy of a multicomponent mixture
• Chemical Potential
• Partial Molar Property
• Partial Pressure of Ideal-Gas
• Ideal-Gas Mixtures
– enthalpy of an ideal gas
– entropy of an ideal gas

• Gibbs energy of an ideal-gas mixture Gig = Hig –
TSig, 



Nonideal gas mixtrures



Fugacity and Fugacity Coefficient
• For for pure species i, at constant T, in the ideal-gas 

state, the Gibbs’ free energy, dG = −SdT +Vdp,

• Integration gives,

where Gi (T) is the integration constant at constant T
• Ideal gas mixture, recall
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!$$% = Γ$ $ + &$ ln ) + &$ ln *$
!$$% = Γ$ $ + &$ ln *$)

•For real gas (fluid), write an analogous

•in which pressure p is replaced by a new 
property fi, with units of pressure. This 
equation provides a partial definition of fi, the 
fugacity of pure species i.
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Fugacity and Fugacity Coefficient

• At same T and p

where             is the residual Gibbs energy
• The dimensionless ratio fi / P is another new 

property, the fugacity coefficient, given the 
symbol fi .
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Fugacity and Fugacity Coefficient

• Therefore,

• The definition of fugacity is completed by 
setting the ideal-gas-state fugacity of pure 
species i equal to its pressure p.
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• The definition of the fugacity of a species in 
solution is parallel to the definition of the 
pure species fugacity, Recall 

• So we have

• where      is the fugacity of species i in 
solution, replacing the partial pressure yi p.

• And for same T and P
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Residual Property

• Define residual property as

• where M is the molar (or unit-mass) value of 
a thermodynamic property and Mig is the 
value that the property would have for an 
ideal gas of the same composition at the 
same T and P.
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Residual Property

• Multiply n on both side,

• Differentiation with respect to ni at constant 
T, P, and nj gives:
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Residual Property

• each term has the form of a partial molar 
property, therefore,

• Written for the residual Gibbs energy,

• and
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Residual Property
• Using identity

• then

• Where

• This is the fugacity coefficient of species i in 
solution
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Residual Property

• For an ideal gas, 

is necessarily zero; 
• therefore
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The Ideal Solution



The Ideal Solution

• Recall Gibbs energy of an ideal-gas mixture

• We therefore define an ideal solution as one 
for which:

where id means ideal solution
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The Ideal Solution
• All other thermodynamic properties for an ideal 

solution follow from this definition, 
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The Ideal Solution

• Since
• Therefore

• From definition of partial molar property
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The Ideal Solution
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The Lewis/Randall Rule
• Recall 

• so
• fugacity of a species in an ideal solution, therefore,

• Also by definition, 

• Therefore the Lewis/Randall Rule
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Ideal solution Ideal gas mixture

ig

i

i

i

ig

ig

i

ig

i

ig

i

ig

i

ig

ii

ig

i

HyH
p T, mixture at value pureHH

 pTHpTH
 pTHpTH

å=
=

=

=

)(
),(),(
),(),(

Gig = Hig – TSig, 

Gibbs free energy connect them all

(!!" =*
!
+!(!

!" − -*
!
+! ln +!

(!!" −*
!
+!(!

!" = -*
!
+! ln

1
+!

1!# =*
!
2!1! + -4*

!
2! ln 2!

(!# = −*
!
2!(! − -*

!
2! ln 2!

5!# =*
!
2!5!

(!!# = − 61!
!#

64 $,&
= − 61!

64 $
− - ln 2!

5 = 1 + 4(



Excess Properties
• Since an ideal-gas mixture is an ideal solution

of ideal gases,

• This leads to

• Note that excess properties have no meaning 
for pure species, whereas residual properties 
exist for pure species as well as for mixtures.

• partial excess property
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Excess Properties

• If M represents the molar (or unit-mass) 
value of any extensive thermodynamic 
property, then an excess property ME is 
defined as

• By definition, 
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The Excess Gibbs Energy and the 
Activity Coefficient

• Since

• And

• Therefore 
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• Left side is the partial excess  Gibbs energy
• Right side is the dimensionless ratio activity 

coefficient of species i in solution, symbol gi
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Activity and activity coefficient

• Recall the define of an ideal solution:

• We define

• Where      is the reference or standard state 
chemical potential. The quantity, ai, is 
called the "activity" of component i.
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Activity and activity coefficient
• Thus, for an ideal gas 

mixture,

• for an nonideal gas 
mixture,

• for an ideal solution 
mixture,
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Thermodynamic Consistency

• For Binary experimental data

• or
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Thermodynamic Consistency
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Thermodynamic Consistency

• If a data set is reduced so as to make the 
residuals in GE/RT scatter about zero,

• This is the direct measure of deviations 
from the Gibbs-Duhem equation. The 
extent to which a data set departs from 
consistency is measured by the degree to 
which these residuals fail to scatter about 
zero
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P/kPa x1 y1  ln  γ 1  *   ln  γ 2  *  
 
   (     G   E  ________  x  1    x  2   RT

   )     
*
  

90.15  ( P 2  sat ) 0.000 0.000 0.000
91.78 0.063 0.049 0.901 0.033 1.481
88.01 0.248 0.131 0.472 0.121 1.114
81.67 0.372 0.182 0.321 0.166 0.955
78.89 0.443 0.215 0.278 0.210 0.972
76.82 0.508 0.248 0.257 0.264 1.043
73.39 0.561 0.268 0.190 0.306 0.977
66.45 0.640 0.316 0.123 0.337 0.869
62.95 0.702 0.368 0.129 0.393 0.993
57.70 0.763 0.412 0.072 0.462 0.909
50.16 0.834 0.490 0.016 0.536 0.740
45.70 0.874 0.570 0.027 0.548 0.844
29.00  ( P 1  sat ) 1.000 1.000 0.000

Table 13.5: VLE Data for Diethyl Ketone(1)/n-Hexane(2) at 65°C

the data points of Fig. 13.8(b) for (GE∕(x1x2RT ))* show scatter, they are adequate 
to define a straight line:

     G   E  _______  x  1    x  2   RT
   = 0.70 x  1   + 1.35 x  2    

This is the Margules equation with A21 = 0.70 and A12 = 1.35. Derived values of 
ln γ1 and ln γ2 are calculated by Eqs. (13.40) and Eqs. (13.41), and derived values 
of P and y1 all come from Eqs. (13.57) and (13.58). These results, plotted as solid 
lines of Figs. 13.8(a) and 13.8(b), clearly do not represent a good correlation of 
the data.

The difficulty is that the data are not consistent with the Gibbs/Duhem equa-
tion. That is, the sets of experimental values, ln    γ 1  *   and ln   γ 2  * ,  shown in Table 13.5 
are not in accord with Eq. (13.55). However, the values of ln γ1 and ln γ2 derived from 
the correlation necessarily obey this equation; the experimental and derived val-
ues therefore cannot possibly agree, and the resulting correlation cannot provide a 
precise representation of the complete set of P-x1-y1 data.

Application of the test for consistency represented by Eq. (13.59) requires cal-
culation of the residuals δ(GE∕RT ) and δ ln(γ1∕γ2), values of which are plotted vs. 
x1 in Fig. 13.9. The residuals δ(GE∕RT ) distribute themselves about zero,15 as is 
required by the test, but the residuals δ ln(γ1∕γ2), which show the extent to which 
the data fail to satisfy the Gibbs/Duhem equation, clearly do not. Average absolute 
values of this residual less than 0.03 indicate data of a high degree of consistency; 
average absolute values of less than 0.10 are probably acceptable. The data set 

15The simple procedure used here to find a correlation for GE/RT would be slightly improved by a regression 
 procedure that determines the values of A21 and A12 that minimize the sum of squares of the residuals δ(GE/RT ) .
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worse fit to the experimentally derived ln γ1, ln γ2, and (GE∕(x1x2RT )). This fitting 
procedure ignores the vapor-phase composition data from which those experimen-
tally derived activity coefficients were determined.

Incorporation of Vapor-Phase Fugacity Coefficients
Restriction to low pressures where the vapor phase can be assumed to be in the ideal-gas state 
is not always possible or even desirable. Practical processes are often operated at elevated 
pressure to increase throughput or capacity. In that case, experimental data may be taken at 
elevated pressure to increase their relevance to process conditions.

At moderate pressures Eq. (3.36), the two-term virial expansion in P, is usually adequate 
for property calculations. The fugacity coefficients required in Eq. (13.14) are then given by 
Eq. (10.64), here written:

    ϕ ˆ   i  v  = exp   P ___ 
RT

    [   B  ii   +   1 _ 2    ∑ 
j
      ∑ 

k
      y  j    y  k   (2 δ  ji   −  δ  jk  )  ]     (13.60)

where    δ  ji   ≡ 2  B  ji   −  B  jj   −  B  ii         δ  jk   ≡ 2  B  jk    −  B  jj   −  B  kk    
with δii = 0, δjj = 0, etc., and δij = δji, etc. Values of the virial coefficients come from a gen-
eralized correlation, as represented for example by Eqs. (10.69) through (10.74). The fugacity 
coefficient for pure i as a saturated vapor   ϕ i  sat   is obtained from Eq. (13.60) with δji and δjk set 
equal to zero:

   ϕ  
i
  sat  = exp   

 B  ii    P i  sat 
 ______ 

RT
    (13.61)

Figure 13.9: Consistency test of data 
for diethyl ketone(l)/n-hexane(2) at 
65°C.
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Models for the Excess Gibbs Energy

• GE/RT is a function of T, P, and composition, 

• Therefore, 

• But for liquids at low to moderate pressures 
it is a very weak function of P. Therefore the 
pressure dependence of activity coefficients 
is usually neglected. 
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Models for the Excess Gibbs Energy

• Thus,

• For binary systems, the function most 
often represented by a power series in 
x1
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Models for the Excess Gibbs Energy

• Since x2 = 1 - x1, therefore,

• This is know as the Redlich/Kister expansion
which is the most commonly used 
polynomial in regular and subregular 
solution  models
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Regular Solution
• Recall

• Let 

• Regular solution is an non ideal solution  with small 
deviation from ideal solution

• Regular solution is defined as a solution possesses 
an enthalpy of mixing but no entropy of mixing.
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Regular Solution

• That is

• Since 

• Therefore, 
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Enthalpy of Regular Solution

• The word regular implies that the molecules 
mix in a completely random manner, which 
means that there is no segregation or 
preference.

• Consider two neighbors in a solution. The 
probability that one of the neighbors is A or 
B is simply
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Enthalpy of Regular Solution

• Therefore the probability that a given 
``bond'' is A—B type is

• If each atom has z nearest neighbors, 
the number of bonds, total, is 
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Enthalpy of Regular Solution

• The bond density of A-B type is:

• If the energy per bond is w(AB) then the 
enthalpy density (due to the A-B bonds) is:

• Similarly
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Regular Solution

• According to the definition of Regular solution, 
entropy of mixing  equals to ideal solution

• Therefore, 
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Regular Solution
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Regular Solution

• Since

• Therefore,  
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Otto Redlich AND A. T. Kister Expansion 

• Recall 

• For binary system, 
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• Therefore,

• Let 
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Otto Redlich AND A. T. Kister Expansion 

• Since Q = 0 for x = 0 and x1 = 1, each term 
must contain the factor x1(1 – x1).

• Introduce the expansion,

• The coefficients may be determined by

• This is know as the Redlich/Kister expansion
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Otto Redlich AND A. T. Kister Expansion 

• Or 

• Case 1, ideal solution

• Case 2, B ≠ 0, C,D,…=0, a form of regular
• Case 3, B ≠ 0, C ≠ 0, D,E,…=0, subregular
• ···
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All activity coefficients derived from an excess Gibbs free energy expression 
that satisfies boundary conditions of being zero at x1= 0 and 1 will satisfy the 
Gibbs-Duhem equation.
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Infinite dilution
• As a solution becomes pure in species i, both 

properties approach pure species property

• In the limit of infinite dilution
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• For a binary solution

• Gibbs-Duhem equation is

• Dividing by dx1, we have the Gibbs-Duhem
equation in derivative forms
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• Since                ,

• therefore                     ,

• Therefore, 

• These equations can be used to obtain partial 
molar properties from experiment solution 
property.  
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Activity Coefficient Model

• Random mixing assumption (Wohl’s 
expansion):

– Redlich-Kister model
– Margules model
– van Laar model
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66

Margules’ Equations
•While the simplest Redlich/Kister-type correlation 
is the Symmetric Equation, but a more accurate
equation is the Margules correlation:

•let,

•so that
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Margules’ Equations
•If you have Margules parameters, the activity 
coefficients can be derived from the excess Gibbs 
energy expression:

•to yield:

•These empirical equations are widely used to describe 
binary solutions.  A knowledge of A12 and A21 at the 
given T is all we require to calculate activity 
coefficients for a given solution composition.
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•Another two-parameter excess Gibbs energy 
model was developed from an expansion of 
(RTx1x2)/GE instead of GE/RTx1x2.  The end 
results are:

•for the excess Gibbs energy and:

•for the activity coefficients.
•as x1®0, lng1

¥ = A’12 as x2 ® 0, lng2
¥ = A’21

Van Laar Correlation
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