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Recap Mixture/solution

* From the definition —  [a(nG)
of chemical Wi =0p = [ an,
potential, plMiz]
« we introduced 5 _ [a(ng)
partial molar C | aw) DT
property

times dn; on both sides, therefore, has to be

* This allow the
calculation of
mixture properties
at a small deviation

d6 = nd 9 = 0Oxdny +8ydn, + -+
D,

TlQ| =51n1+§27’l2+"‘.
p,T



Recap Mixture/solution

* A partial molar property (other than
volume) of a constituent species in an ideal-
gas mixture is equal to the corresponding
molar property of the species as a pure ideal
gas at the mixture temperature but at a
pressure equal to its partial pressure in the
mixture.

 This leads to

/l/jg(f, P) = /l/jg(T, pl.) when /l/jg # ijg



Recap Mixture/solution

Gibbs free energy of a multicomponent mixture
Chemical Potential

Partial Molar Property

Partial Pressure of Ideal-Gas

Ideal-Gas Mixtures
— enthalpy of an ideal gas
— entropy of an ideal gas

Gibbs energy of an ideal-gas mixture G¢ = H8 —
TS,



Nonideal gas mixtrures



Fugacity and Fugacity Coetficient

For for pure species 7, at constant 7, in the ideal-gas
state, the Gibbs’ free energy, dG = —SdT +Vdp,

i i KT
dc. =V dp ——a’p = K7d In p

Integration gives,

G = T0)+ RT1np

where 7/;(7) is the integration constant at constant 7
Ideal gas mixture, recall

' =6¢" =67 + Rl n y,




g
Gi
A
[ \

uf‘g =I;(T)+ RTInp + RT Iny;

w9 =T;(T) + RT Iny;p

ng =T.(7) + RT In p
*For real gas (fluid), write an analogous
G.o= FZ.(T) + K7 1In 7.

*in which pressure p is replaced by a new
property f, with units of pressure. This
equation provides a partial definition of £, the
fugacity of pure species L.



Fugacity and Fugacity Coetficient

 Atsame 7 and p

18 f;
GJ_ — G'J, = K7 Iln —
ye,

where ¢ — ¢ is the residual Gibbs energy
* The dimensionless ratio f;/ P is another new

property, the fugacity coefficient, given the
symbol ¢..



Fugacity and Fugacity Coetficient

 Therefore,

Gf = KT 1n ¢, where ¢ =1,/ p

* The definition of fugacity is completed by
setting the ideal-gas-state fugacity of pure
species i equal to its pressure p.



The definition of the fugacity of a species in
solution is parallel to the definition of the
pure species fugacity, Recall

18

U, = FJ.(T) + K7 1n y . p

So we have X
p. =T(T)+ Rl 1n £,

where 7 is the fugacity of species i in
solution, replacing the partial pressure y;p.
And for same 7 and P

N

r

;

o — ,ujg = K7 In
V.Dp

1



Residual Property

* Define residual property as
R

M =u—u"
 where M is the molar (or unit-mass) value of
a thermodynamic property and M* is the
value that the property would have for an

ideal gas of the same composition at the
same 7 and P.



Residual Property

* Multiply » on both side,
nMR =nM — nM'

* Differentiation with respect to n; at constant
T, P, and n; gives:

S o e B o

p,T,n;j



Residual Property

* each term has the form of a partial molar

property, therefore,
— _

u' = -
* Written for the residual Gibbs energy,
6' =6 -6

e and .
r

;

o — ,ujg = K7 In
y.p

1



Residual Property

Using identity )
8(176) —
. = = G,
- anj Ap,7,n._ .
then a
GJ.R = K7 1n ¢?1
h =
Where ) f;
4, =
y.D

This is the fugacity coefficient of species 7 in
solution



Residual Property

* For an ideal gas,

r

¢ =6 —G¢°
7z i

is necessarily zero;

e therefore

R

G = RT1ng. =0
gr =

Ajg

= V.p

1



The Ideal Solution



The Ideal Solution

* Recall Gibbs energy of an ideal-gas mixture

G.jg = ng + K7 1n V.

1

* We therefore define an ideal solution as one
for which:

¢'" =G + R 1n x,

1

where id means ideal solution



The Ideal Solution

* All other thermodynamic properties for an ideal
solution follow from this definition,

dG =—SdT +Vdp+_ wdn,
i=1

_J'd

S

oG
or
D, X

oG .
— — — /A 1n X
o7
D

_J'd

GJ. = GZ. + K7 1n X




The Ideal Solution

* Since ;v _ oy 7ee

e Therefore

7d

]7’1, = GJ. + /7 1n X+ TSJ. — K7 1n X

_J'd

"' = H,

* From definition of partial molar property

w' = z XJ_/I;;O’



The Ideal Solution

'Y = z x G, + ]PTZ x. 1n x,
S’ = Z x S, + [PTZ x_ 1n x,
7 z x V.

o' = Z x M,



The Lewis/Randall Rule

G = 1.(I) + &7 1n £
Recall : : A

g, =G, =T T)+ RT 1n 7,
SO pn, = G + RTIn(r, /)  2)-(1)

fugacity of a species in an ideal solution, therefore,

=G 6+ k@ /D)

Also by definition,
E“’ — G, + R7 1n i =fi/p
Therefore the Lewis/Randall Rule b; = fi/yip

~id nid N, Al
B = xf, or B =g $9=f9/yp

Ideal solution is ideal gas mixture which is ideal gas



|deal solution <

G = Exigi + RTZ x; In x;
i

|deal gas mixture

G'¢ = Hs - T§¥,

—ig
:Z)’isi —RZJ’ilnl’i

<l
Zyl ‘RZ%‘“—

H*(T,p,)=H,(T,p)

ng g<Tm—HﬂTm

i H )

Gibbs free energy connect them all

= H *(pure value at mixtureT, p)

- S



Excess Properties

Since an ideal-gas mixture is an ideal solution
of ideal gases,

- = x i, = x i = x i
This leads to 1 l 1
Mt —ut = =S x ]

Note that excess properties’have no meaning
for pure species, whereas residual properties
exist for pure species as well as for mixtures.

partial excess property

B —

M =wm - —— m = m, —u



Excess Properties

* If M represents the molar (or unit-mass)
value of any extensive thermodynamic
property, then an excess property M” is
defined as

ME — y — de

* By definition,




The Excess Gibbs Energy and the
Activity Coefficient

e Since _
G =pu =T )+ RT1n 7,

e And _

G =T+ RT 1n £

e Therefore

. id 12' 12
G — G = R In—— = R7T In —
f,zd Xl,f;_




* Left side is the partial excess Gibbs energy

* Right side is the dimensionless ratio activity
coefficient of species i in solution, symbol ¥;

* or I




Activity and activity coefficient

 Recall the define of an ideal solution:

7d _J'd

g, =6 =G + RT 1n x|
* We define

A, = ,ulc.) + /7 1In

 Where 4, is the reference or standard state
chemical potential. The quantity, «;, is
called the "activity" of component i.

Notice, we have activity coefficient then activity



Activity and activity coefficient

 Thus, for an ideal gas )
. g _ 1 __
mixture, a ==
p
* for an nonideal gas fl
mixture, & ="
p

 for an ideal solution
mixture, a,‘ :xi



Thermodynamic Consistency

* For Binary experimental data

&Y
{J = x, 1n 7/* + x, In 7/;

rr
d(c* / rr) d1n " ) d1n y. )
= X, + In p, + x, — 1In p,
dx, dx, dx,
* Or
£ - %k sk *
a’(G /]?T) _lny1+Xd1n7/1+Xdln7/2

* 1 2

dx 7, dx dx

1 1 1



Thermodynamic Consistency

dc” s rr) alc” / r7) v, '
_ = ln— — In —
dx, dx, 7, 7,
d1n y, d1n y,
0 — | x, + X,
dx, dx,
as(c” / r7) 7, dln dln .
= o ln — — | x|, + X,
dx, 7, dx, dx,
where Ndlny +Ndlny, =0

The Gibbs/Duhem equation



Thermodynamic Consistency

 If a data set is reduced so as to make the
residuals in G%/RT scatter about zero,

d1ln ». d1ln v
O 1n ?/—1 = X, 4! + X, &
7, dx dx

1 1

* This is the direct measure of deviations
from the Gibbs-Duhem equation. The
extent to which a data set departs from
consistency is measured by the degree to
which these residuals fail to scatter about
Zero



Table 13.5: VLE Data for Diethyl Ketone(1)/n-Hexane(2) at 65°C

GE \°

P/kPa X1 Vi Iny; Iny} <x1x2 RT)
90.15 (P5™)  0.000  0.000 0.000

91.78 0.063 0.049 0.901  0.033 1.481
88.01 0.248 0.131 0472  0.121 1.114
81.67 0.372  0.182 0.321  0.166 0.955
78.89 0.443 0215 0278 0.210 0.972
76.82 0.508 0.248 0.257 0.264 1.043
73.39 0.561 0.268 0.190  0.306 0.977
66.45 0.640 0.316 0.123  0.337 0.869
62.95 0.702 0.368 0.129  0.393 0.993
57.70 0.763 0.412 0.072  0.462 0.909
50.16 0.834 0.490 0.016 0.536 0.740
45.70 0.874 0.570 0.027  0.548 0.844

29.00 (P} 1.000  1.000  0.000




Figure 13.9: Consistency test of data
for diethyl ketone(l)/n-hexane(2) at
65°C.

Not consistent with thermos
(heavily concentrated on
one side)
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Models for the Excess Gibbs Energy

« GE/RT is a function of T, P, and composition,

G = RT 1n y,
 Therefore,

GE
= 2 X Ay,

« But for liquids at low to moderate pressures
it is a very weak function of P. Therefore the
pressure dependence of activity coefficients
is usually neglected.



Models for the Excess Gibbs Energy

Thus,
GE
E :g(xlaxzamaxN)

For binary systems, the function most
often represented by a power series in

X1
E
G

XX, RT

=a+bx, +cx’ +--



Models for the Excess Gibbs Energy

Since x, =1 - x;, therefore,
GE

XX, RT B A+B(x1 _x2)+C(xl —x2)2 4.

* This is know as the Redlich/Kister expansion
which is the most commonly used
polynomial in regular and subregular
solution models



Regular Solution

Recall &,/ = G, + R7T 1n x,

RT Inx, = AH + TAS

RS 1d
GJ’ o GJ’

AG

Let AGTS

Regular solution is an non ideal solution with small
deviation from ideal solution

Regular solution is defined as a solution possesses
an enthalpy of mixing but no entropy of mixing.



Regular Solution

 Thatis AGES = AH® _ TASHS

= AH™ — TAS™

* Since , , ,
AGY = AHY — TAS}”

 Therefore,

RS d RS d RS
GF G = HP T = AK




Enthalpy of Regular Solution

 The word regular implies that the molecules
mix in a completely random manner, which
means that there is no segregation or
preference.

« Consider two neighbors in a solution. The
probability that one of the neighbors is A or

B is simply
P, = N =Xy
N, + N,
Py N = Xp



Enthalpy of Regular Solution

* Therefore the probability that a given
“bond"” is A—B type is
2N ,N,

(N, +N,)

Hupy =P+ 5y = =2 X,

 If each atom has z nearest neighbors,
the number of bonds, total, is

Bt()tal > (N + N ) Btotal _

i
2



Enthalpy of Regular Solution

 The bond density of A-B type is:
B(AB) = })(AB)mel = ZX X p AB+BA

* If the energy per bond is w g, then the
enthalpy density (due to the A-B bonds) is:

H@%) = ZW(4p)X 4%

- Similarly RS

(44)

2
z S
WX a¥as ) =X

H (3) = 5 W(pp)XsX,




AHmixing — Hsol . H pure
Z Z
Himix = ZXqxpWyp + (E XaXaWpp t+ ExBxBWBB)
Z X X
RS __ A B
Hiapy = 5%axXp (ZWAB + XaWap T xBWBB)
2 Xq4Xp XAaXp
Z 1-— XB 1-— XA
= E.XA.XB ZWAB + — X4W4gu —+ — XpWpgp
XqaXp Xq4Xp
Z —Xp —X4
= = XpXp ZWAB + XaWaa ~+ XpWpgp
2 XqaXp XaXp

_|_< XaWqp T xBWBB%
XAXB

~__ “~

Z
= 5 XaX (2wyp — wyy — wpp)




Regular Solution

e According to the definition of Regular solution,
entropy of mixing equals to ideal solution

e Therefore,
AG(AB) — AH(AB)

GE RS __

E.RS
G

Z

— S5 XA4XB
2

GRS

z
=—X,X;W
A" B

2

WRS

Gid — AGRS

RS

= X X

sid = insi —Rinlnxl-
L

L

/

—T(—R)(x4Inx, + xgInxg)

. AGid L GO . GO




r7 RS RS RS RS RS
~x HY (L= x, B = HY — x 0% — x, i




Regular Solution

B /aHRS \
HZ;E,RS ZH(IEB)—I—XA ax(AB)
. 2
=X X, +X, ol x; )
OX

= X | X, +an)(xA —xB)

L 2



Regular Solution
* Since G'_ — @: RT 1In vy,

 Therefore,

~ E,RS

G, B o
TR T

~ E,RS |
GB _ - W ) symmetric

RT RT



Otto Redlich AND A. T. Kister Expansion

 Recall Gt
Z XJ' 1n 7/1'

RT

F;

* For binary system,




*(r)

dxq

=Iny; —lny,

(g

dxq

(1—2x1) = (1 —x)(ny; —Iny,)

=(1—-x)Iny; — (1 —x1)Iny,
=lIny; —x;Iny; —x,Iny,
GE

= Iny, — —
ny; RT

\ / G"

ﬁ:)ﬁln?ﬁ"‘){zln%




*(r)

dxq

(1—x3)

N

=Iny; —lny,

(g

dxq

= (1 —x)(ny; —Iny,)

= x1Iny; — (1 —x3) Iny,

— x1 ln)/1 +xZ lnyz _ln)/Z

GE

= _ln]/Z + —

-

RT

GE

RT

= x, Ilny, + x, In y,




 Therefore,

hl?/l:[

GE

RT

j+@x9d[g;




Otto Redlich AND A. T. Kister Expansion

« Since 0 =0forx=0andx, =1, each term
must contain the factor x,(1 — x,).

* Introduce the expansion,
E
G— =0 =x(1-x, )(B+ C(2x, —1)+D(2x, -1)’ +)

. The coefficients may be determined by
Q0 _lny Iny,
X, (1-x,) 1 xl X
* This is know as the Redlich/Kister expansion




Otto Redlich AND A. T. Kister Expansion

Or h{”j Y = B(1-2x, )+ C(6x,(1-x,)—1)+---
7> dx,

Case 1, ideal solution

h{”] 0
V>

Case 2,B#0, C,D,...=0, a form of regular
Case3,B#¥0,C#0,D,E,...=0, subregular



Excess Gibbs Free Energy
and Gibbs-Duhem Equation

If G*(T,P,x)=axx,then ¢\ = ax’ = RT Iny,, G, = ax’ = kT Iny,

an{n

0(nG™) anyny 0( 7’11 2)

anl B n B anl

n d(nyn,) 1

= an2 o — n2 (nyn;)
~a  d(ny) . a Jd(n,) 1 ( )
— n’nz anl nnl anl anz n1n2

a a Jdn—ny) 1
— Enz + Enl anl — aﬁ (nan)

a 1
=—N, —a— (Tllnz) — Cl(xz — X2 + xZ) — axZ

n n?



Excess Gibbs Free Energy
and Gibbs-Duhem Equation

- ex —ex

Qex(T,P,)_c):axlxz G, = EiX22 = KT In 12 Go = EJZXIZ = K7 1In 7,

ex

ZXdGz

ex ex

XdGl + X, dG» _Xd(ax )+x2d(ax12)

T.P

=2ax,x, (dx2 +dx, ) =2axx,d(x, +x,)=0

X Olny, ix, Olny, _x a | 0(1-x,) ix, a | 0(1-x,)
ox, )., ox, )., RT| ox, |, RT ax, |,

B 2axl (1_ " a{@xf} __2axx, | 2axx, _

2 =0
T| ox, RT RT
All activity coefficients derived from an excess Gibbs free energy expression
that satisfies boundary conditions of being zero at x;= 0 and 1 will satisfy the
Gibbs-Duhem equation.

ex . a . . . <
atx;=0andx;=1 G =0 then the activity coefficients satisfy 0= leid Iny,

T.P



Infinite dilution

* As a solution becomes pure in species i, both
properties approach pure species property

lim 6 =1im 6, = 6,

x; —>1 x; —>1

* |n the limit of infinite dilution

_ — —00
llm Hi = Hi
xi—0



* For a binary solution

6=x0+x,06,

d6 = x, 46+ fdx, + 30, +0,dx,

* Gibbs-Duhem equation is
x,d0,+x,d0, =0

* Dividing by dx,, we have the Gibbs-Duhem
equation in derivative forms

do, dé,
X, —+x,—==0
dx, dx,



* Since x, +x,=1, dx, =—dx,

d@ df = 6,dx, + 0,dx,
. 5 _a s
therefore x =0, -0, , G SOt
— — do — =
0 — x2(91 82) — 91 — ng Q = x191 +X292
d@l Q =(1- x2)51 + x2§2
Q +X1(01 82) — 92 +x1 dx Q X 01+(1—X1)02
1

 Therefore,

0 = 9+x2d9 6, =0- x1d9

dx, dx,
* These equations can be used to obtain partial
molar properties from experiment solution

property.




do ||~

dx,

0 =0+x,— 0, =0-x,

do
dx,

Constant 7, P

:/
I =
®
0 1
.\'1
(a)

Constant T, P

(b)

Figure 11.1: (a) Graphical construction of Example 11.2. (b) Infinite-dilution values of partial

properties.




V/em® mol ™!

Z:V+%éK
dx,
V,=V-x ar
dx,

Figure 11.2: Molar
volumes for
methanol(1)/water(2)
at 25°C and 1(atm).
Numerical values
relate to Ex. 11.3.

limV =limV, =V,

x;—1 x; —>1

. —_— r 700
limV =V
x; —0



Example

H =400x, + 600x, + x,x,(40x, +20x, )

x,=1-x

H=600-180x, —20x,’

d—H:—180—60x12

dx,

ﬁle+x2d—H ﬁzzH—xld—H
dx, dx,

H =420-60x"+40x" H,=600+40x

H*=420 H,”=640



Activity Coefficient Model

Iny.=G; /RT Qex/RT=inln7/i

 Random mixing assumption (Wohl’s
expansion)'

PIXELIO R RILE

RTqu

— Redlich-Kister model
— Margules model
— van Laar model



Margules’ Equations

*While the simplest Redlich/Kister-type correlation
is the Symmetric Equation, but a more accurate
equation is the Margules correlation:

GE
= A4,,x, + 4,x,
RTx x,
let,
G G*
Iny” =1 =4 - 0,x, > 1
/1 IQEIOIRTxle RTxyx,| 2 v
A, =Iny”
so that 12 /1

A, =Iny;



Margules’ Equations

If you have Margules parameters, the activity
coefficients can be derived from the excess Gibbs
energy expression: i

G

‘to yield: RTx,x,
Iny, = x;[ 4, +2(4,; — 4,)x,]
Iny, = x12[A21 +2(4, — 4,))x, ]

= A4,,x, + A,x,

These empirical equations are widely used to describe
binary solutions. A knowledge of A,, and A,, at the
given T is all we require to calculate activity
coefficients for a given solution composition.



Van Laar Correlation

Another two-parameter excess Gibbs energy

model was developed from an expansion of
(RTx,X,)/GE instead of GE/RTx,x,. The end

results are: G A4,

RTx x, - Al'le + A'zlx2
for the excess Gibbs energy and:

. -2 | -2
. A, x ' A,x
Iny, = A21£1+ A'l 2) Iny, = A12(1+ A.lz lj

12X 21%2
for the activity coefficients.

*as x>0, Inyy”=A'; as x;—> 0, Iny,” = A,




