Solution Thermodynamics II

Min Huang, PhD
CheEng@TongjiU

$$
\begin{aligned}
& \text { Continue } \\
& \text { from } \\
& \begin{array}{l|l}
d E=T d S-\overline{p d V}+\sum_{i=1}^{r} \mu_{i} d n_{i} & \\
& \\
d G=-S d T \overline{+V d p}+\sum_{i=1}^{r} \mu_{i} d n_{i} & d \mathscr{H =}
\end{array} \\
& \mu_{i}=\bar{G}_{i} \equiv\left[\frac{\partial(n \underline{\underline{G}})}{\partial n_{i}}\right]_{p, T, n_{i \neq j}} \\
& \bar{\theta}_{i} \equiv\left[\frac{\partial(n \underline{\theta})}{\partial n_{i}}\right]_{p, T, n_{i \neq j}}-n\left(\frac{\partial \underline{\theta}}{\partial T}\right)_{p, n_{i}} d T-n\left(\frac{\partial \underline{\underline{\theta}}}{\partial p}\right)_{T, n_{i}} d p+\sum_{i}^{r} n_{i} d \bar{\theta}_{i}=0
\end{aligned}
$$

Term paper

- Title: Thermodynamics knowledge tree
- Name and affiliation
- Abstract
- Introduction: background, what's new, layout
- Theory: work, heat and temperature, $1^{\text {st }}$ and $2^{\text {nd }}$ law, batch and fluid, ...
- Diagram: key links
- Summary
- References

Recap Mixture/solution

- From the definition of chemical potential,
- we introduced partial molar property

$$
\bar{\theta}_{i}=\left[\frac{\partial(n \underline{\theta})}{\left.\partial n_{i}\right)}\right\}_{p, T, n_{i \neq j}}
$$

- This allow the calculation of

$$
\mu_{i}=\bar{G}_{i}=\left[\frac{\partial(n \underline{G})}{\partial n_{i}}\right]_{p, T, n_{i \neq j}}
$$

times dn_{i} on both sides, therefore, has to be mixture properties at a small deviation

$$
\begin{gathered}
d \theta=\left.n d \underline{\theta}\right|_{p, T}=\bar{\theta}_{1} d n_{1}+\bar{\theta}_{2} d n_{2}+\cdots \\
\left.n \underline{\theta}\right|_{p, T}=\bar{\theta}_{1} n_{1}+\bar{\theta}_{2} n_{2}+\cdots
\end{gathered}
$$

Recap Mixture/solution

- A partial molar property (other than volume) of a constituent species in an idealgas mixture is equal to the corresponding molar property of the species as a pure ideal gas at the mixture temperature but at a pressure equal to its partial pressure in the mixture.
- This leads to

$$
\bar{M}_{i}^{i g}(T, P)=M_{i}^{i g}\left(T, p_{i}\right) \text { when } M_{i}^{i g} \neq V_{i}^{i g}
$$

Recap Mixture/solution

- Gibbs free energy of a multicomponent mixture
- Chemical Potential
- Partial Molar Property
- Partial Pressure of Ideal-Gas
- Ideal-Gas Mixtures
- enthalpy of an ideal gas
- entropy of an ideal gas
- Gibbs energy of an ideal-gas mixture $\boldsymbol{G}^{i \boldsymbol{g}}=\boldsymbol{H}^{i g}$ TS ${ }^{i g}$,

Nonideal gas mixtrures

Fugacity and Fugacity Coefficient

- For for pure species i, at constant T, in the ideal-gas state, the Gibbs' free energy, $d G=-S d T+V d p$,

$$
d G_{i}^{i g}=V_{i}^{i g} d p=\frac{R T}{} d p=R T d \ln p
$$

p

- Integration gives,

$$
G^{1 g}=\Gamma_{i}(T)+R T \ln D
$$

where $\Gamma_{i}(T)$ is the integration constant at constant T

- Ideal gas mixture, recall

$$
\mu_{i}^{i g} \equiv \underbrace{\bar{G}_{i}^{i g}=G_{i}^{i g}}_{\rightarrow \Delta G_{i}}+R T \ln y_{i}
$$

$$
\begin{gathered}
\mu_{i}^{i g}=\overbrace{\Gamma_{i}(T)+R T \ln p+R T \ln y_{i}}^{G_{i}^{i g}} \\
\mu_{i}^{i g}=\Gamma_{i}(T)+R T \ln y_{i} p \\
G_{i}^{i g}=\Gamma_{i}(T)+R T \ln p
\end{gathered}
$$

-For real gas (fluid), write an analogous

$$
G_{i} \equiv \Gamma_{i}(T)+R T \ln f_{i}
$$

-in which pressure \boldsymbol{p} is replaced by a new property $\boldsymbol{f}_{\boldsymbol{i}}$, with units of pressure. This equation provides a partial definition of f_{i}, the fugacity of pure species i.

Fugacity and Fugacity Coefficient

- At same T and p

$$
G_{i}-G_{i}^{i g}=R T \ln \frac{f_{i}}{p}
$$

where $G_{i}-G_{i}^{t_{i}}$ is the residual Gibbs energy

- The dimensionless ratio f_{i} / P is another new property, the fugacity coefficient, given the symbol ϕ_{i}.

Fugacity and Fugacity Coefficient

- Therefore,

$$
G_{i}^{R}=R T \ln \phi_{i}
$$

where $\phi_{i} \equiv f_{i} / p$

- The definition of fugacity is completed by setting the ideal-gas-state fugacity of pure species i equal to its pressure p.
- The definition of the fugacity of a species in solution is parallel to the definition of the pure species fugacity, Recall

$$
\mu_{i}^{i g}=\Gamma_{i}(T)+R T \ln y_{i} p
$$

- So we have

$$
\mu_{i} \equiv \Gamma_{i}(T)+R T \ln \hat{f}_{i}
$$

- where \hat{f}_{i} is the fugacity of species \boldsymbol{i} in solution, replacing the partial pressure $y_{i} p$.
- And for same \boldsymbol{T} and \boldsymbol{P}

$$
\mu_{i}-\mu_{i}^{i g}=R T \ln \frac{\hat{f}_{i}}{y_{i} p}
$$

Residual Property

- Define residual property as

$$
M^{R} \equiv M-M^{i g}
$$

- where M is the molar (or unit-mass) value of a thermodynamic property and $M^{i g}$ is the value that the property would have for an ideal gas of the same composition at the same T and P.

Residual Property

- Multiply n on both side,

$$
n \underline{M}^{R}=n \underline{M}-n \underline{M}^{i g}
$$

- Differentiation with respect to $\boldsymbol{n}_{\boldsymbol{i}}$ at constant $\boldsymbol{T}, \boldsymbol{P}$, and $\boldsymbol{n}_{\boldsymbol{j}}$ gives:

$$
\left[\frac{\partial\left(n \underline{M^{R}}\right)}{\partial n_{i}}\right]_{p, T, n_{j}}=\left[\frac{\partial(n \underline{M})}{\partial n_{i}}\right]_{p, T, n_{j}}-\left[\frac{\partial\left(n \underline{M}^{i g}\right)}{\partial n_{i}}\right]_{p, T, n_{j}}
$$

Residual Property

- each term has the form of a partial molar property, therefore,

$$
\bar{M}_{i}^{R}=\bar{M}_{i}-\bar{M}_{i}^{i g}
$$

- Written for the residual Gibbs energy,
- and

$$
\bar{G}_{i}^{R}=\bar{G}_{i}-\bar{G}_{i}^{i g}
$$

$$
\mu_{i}-\mu_{i}^{i g}=R T \ln \frac{\hat{f}_{i}}{y_{i} p}
$$

Residual Property

- Using identity

$$
\mu_{i} \equiv\left\{\frac{\partial(n G)}{\partial n_{i}}\right\}_{p, T, n_{i \neq j}}=\overline{G_{i}}
$$

- then
- Where

$$
\begin{gathered}
\bar{G}_{i}^{R}=R T \ln \hat{\phi}_{i} \\
\hat{\phi}_{i} \equiv \frac{\hat{f}_{i}}{}
\end{gathered}
$$

$$
y_{i} p
$$

- This is the fugacity coefficient of species \boldsymbol{i} in solution

Residual Property

- For an ideal gas,

$$
\bar{G}_{i}^{R}=\bar{G}_{i}-\bar{G}_{i}^{i g}
$$

is necessarily zero;

- therefore

$$
\begin{aligned}
& \bar{G}_{i}^{R}=R T \ln \hat{\phi}_{i}=0 \\
& \hat{\phi}_{i}^{i g}=1 \\
& \hat{f}_{i}^{i g}=y_{i} p
\end{aligned}
$$

The Ideal Solution

The Ideal Solution

- Recall Gibbs energy of an ideal-gas mixture

$$
\bar{G}_{i}^{i g}=G_{i}^{i g}+R T \ln y_{i}
$$

- We therefore define an ideal solution as one for which:

$$
\bar{G}_{i}^{i d}=G_{i}+R T \ln x_{i}
$$

where id means ideal solution

The Ideal Solution

- All other thermodynamic properties for an ideal solution follow from this definition,

$$
\begin{array}{ll}
\hline d G=-S d T+V d p+\sum_{i=1}^{r} \mu_{i} d n_{i} \\
\bar{S}_{i}^{\text {id }}=-\left(\frac{\partial \bar{G}_{i}^{i d}}{\partial T}\right)_{p, x}=-\left(\frac{\partial G_{i}}{\partial T}\right)_{D}-R \ln x_{i} \\
\bar{S}_{i}^{\text {id }}=S_{i}-R \ln x_{i} & \overline{G_{i}^{i d}}=G_{i}- \\
\bar{V}_{i}^{\text {id }}=\left(\frac{\partial \bar{G}_{i}^{\text {id }}}{\partial p}\right)_{T, x}=\left(\frac{\partial G_{i}}{\partial p}\right)_{T} \\
\bar{V}_{i}^{\text {id }}=V_{i} &
\end{array}
$$

The Ideal Solution

- Since $\bar{H}_{i}^{i d}=\bar{G}_{i}^{i d}+T \bar{S}_{i}^{i d}$
- Therefore

$$
\begin{aligned}
& \bar{H}_{i}^{i d}=G_{i}+R T \ln x_{i}+T S_{i}-R T \ln x_{i} \\
& \bar{H}_{i}^{i d}=H_{i}
\end{aligned}
$$

- From definition of partial molar property

$$
M^{i d}=\sum_{i} X_{i} \bar{M}_{i}^{i d}
$$

The Ideal Solution

$$
\begin{aligned}
G^{i d} & =\sum_{i} x_{i} G_{i}+R T \sum_{i} x_{i} \ln x_{i} \\
S^{i d} & =\sum_{i} x_{i} S_{i}+R T \sum_{i} x_{i} \ln x_{i}
\end{aligned}
$$

$$
V^{i d}=\sum_{i} x_{i} V_{i}
$$

$$
H^{i d}=\sum_{i} X_{i} H_{i}
$$

The Lewis/Randall Rule

- Recall

$$
\begin{aligned}
G_{i} & \equiv \Gamma_{i}(T)+R T \ln f_{i} \\
\mu_{i} & \equiv \bar{G}_{i}=\Gamma_{i}(T)+R T \ln \hat{f}_{i}
\end{aligned}
$$

- SO

$$
\begin{equation*}
\mu_{i}=G_{i}+R T \ln \left(\hat{f}_{i} / f_{i}\right) \tag{2}
\end{equation*}
$$

- fugacity of a species in an ideal solution, therefore,

$$
\mu_{i}^{i d} \equiv \bar{G}_{i}^{\text {id }}=G_{i}+R T \ln \hat{f}^{i d} / f_{i}
$$

- Also by definition,

$$
\bar{G}_{i}^{i d}=G_{i}+R T \ln X_{i}
$$

- Therefore the Lewis/Randall Rule

$$
\begin{array}{ll}
\hat{f}_{i}^{i d}=x_{i} f_{i} & \text { or } \quad \hat{\phi}_{i}^{i d}=\phi_{i}
\end{array} \hat{\phi}_{i}^{i g}=\hat{f}_{i}^{i g} / y_{i} p
$$

Ideal solution is ideal gas mixture which is ideal gas

Ideal solution

\longleftarrow Ideal gas mixture

$$
\begin{aligned}
& \underline{G}^{i d}=\sum_{i} x_{i} \underline{G}_{i}+R T \sum_{i} x_{i} \ln x_{i} \\
& \begin{array}{l}
\underline{S}_{i}^{i d}=-\left(\frac{\partial \bar{G}_{i}^{i d}}{\partial T}\right)_{p, x}=-\left(\frac{\partial \underline{G}_{i}}{\partial T}\right)_{p}-R \ln x_{i} \\
\underline{S}^{i d}=-\sum_{i} x_{i} \underline{S}_{i}-R \sum_{i} x_{i} \ln x_{i} \\
H=G+T S
\end{array} \\
& \underline{H}^{i d}=\sum_{i} x_{i} \underline{H}_{i} \\
& \underline{G}^{i g}=\underline{H}^{i g}-T \underline{S}^{i g}, \\
& \begin{array}{c}
\underline{S}_{i}^{i g}=\sum_{i} y_{i} \bar{S}_{i}^{i g}-R \sum_{i} y_{i} \ln y_{i} \\
\underline{S}_{i}^{i g}-\sum_{i} y_{i} \bar{S}_{i}^{i g}=R \sum_{i} y_{i} \ln \frac{1}{y_{i}} \\
\underline{H}_{i}^{i g}\left(T, p_{i}\right)=H_{i}^{i g}(T, p) \\
\frac{H_{i}^{i g}}{H_{i}^{i g}}=H_{i}^{i g}(\text { pure value at mixture } T, p) \\
H^{i g}=\sum_{i} y_{i} H_{i}^{i g}
\end{array}
\end{aligned}
$$

Gibbs free energy connect them all

Excess Properties

- Since an ideal-gas mixture is an ideal solution of ideal gases,

$$
M^{i d}-M^{i g}=\sum_{i} x_{i} M_{i}-\sum_{i} x_{i} M_{i}^{i g}=\sum_{i} x_{i} M_{i}^{R}
$$

- This leads to

$$
M^{E}-M^{R}=-\sum x_{i} M_{i}^{R}
$$

- Note that excess properties have no meaning for pure species, whereas residual properties exist for pure species as well as for mixtures.
- partial excess property

$$
M^{E} \equiv M-M^{i d} \longrightarrow \bar{M}_{i}^{E}=\bar{M}_{i}-\bar{M}_{i}^{i d}
$$

Excess Properties

- If M represents the molar (or unit-mass) value of any extensive thermodynamic property, then an excess property M^{E} is defined as

$$
M^{E} \equiv M-M^{i d}
$$

- By definition,

$$
M^{E}-M^{R}=-\left(M^{i d}-M^{i g}\right)
$$

The Excess Gibbs Energy and the Activity Coefficient

- Since

$$
\bar{G}_{i} \equiv \mu_{i}=\Gamma_{i}(T)+R T \ln \hat{f}_{i}
$$

- And

$$
\bar{G}_{i}^{\text {id }}=\Gamma_{i}(T)+R T \ln \hat{f}_{i}^{i d}
$$

- Therefore

$$
\bar{G}_{i}-\bar{G}_{i}^{\text {id }}=R T \ln \frac{\hat{f_{i}}}{\hat{F}_{i}^{\text {id }}}=R T \ln \frac{\hat{f}_{i}}{x_{i} f_{i}}
$$

- Left side is the partial excess Gibbs energy
- Right side is the dimensionless ratio activity coefficient of species i in solution, symbol γ_{i}
- or

$$
\gamma_{i}=\frac{\hat{f}}{x_{i} f_{i}}
$$

$$
\bar{G}_{i}^{E}=R T \ln \gamma_{i}
$$

Activity and activity coefficient

- Recall the define of an ideal solution:

$$
\mu_{i}^{i d} \equiv \bar{G}_{i}^{i d}=G_{i}+R T \ln x_{i}
$$

- We define

$$
\mu_{i}=\mu_{i}^{0}+R T \ln \alpha_{i}
$$

- Where μ_{i}^{0} is the reference or standard state chemical potential. The quantity, α_{i}, is called the "activity" of component i.

Notice, we have activity coefficient then activity

Activity and activity coefficient

- Thus, for an ideal gas mixture,

$$
\alpha_{i}^{i g}=\frac{p_{i}}{p^{0}}=y_{i}
$$

- for an nonideal gas mixture,

$$
\alpha_{i}=\frac{\hat{f}_{i}}{p^{0}}
$$

- for an ideal solution mixture,

$$
\alpha_{i}^{i d}=x_{i}
$$

Thermodynamic Consistency

- For Binary experimental data

$$
\begin{aligned}
& \left(\frac{G^{E}}{R T}\right)^{*}=x_{1} \ln \gamma_{1}^{*}+x_{2} \ln \gamma_{2}^{*} \\
& \frac{d\left(G^{E} / R T\right)^{*}}{d x_{1}}=x_{1} \frac{d \ln \gamma_{1}^{*}}{d x_{1}}+\ln \gamma_{1}^{*}+x_{2} \frac{d \ln \gamma_{2}^{*}}{d x_{1}}-\ln \gamma_{2}^{*}
\end{aligned}
$$

- or

$$
\frac{d\left(G^{E} / R T\right)^{*}}{d x_{1}}=\ln \frac{\gamma_{1}^{*}}{\gamma_{2}^{*}}+x_{1} \frac{d \ln \gamma_{1}^{*}}{d x_{1}}+x_{2} \frac{d \ln \gamma_{2}^{*}}{d x_{1}}
$$

Thermodynamic Consistency

$$
\begin{array}{r}
\frac{d\left(G^{E} / R T\right)}{d x_{1}}-\frac{d\left(G^{E} / R T\right)^{*}}{d x_{1}}=\ln \frac{\gamma_{1}}{\gamma_{2}}-\ln \frac{\gamma_{1}^{*}}{\gamma_{2}^{*}} \\
0-\left(x_{1} \frac{d \ln \gamma_{1}^{*}}{d x_{1}}+x_{2} \frac{d \ln \gamma_{2}^{*}}{d x_{1}}\right) \\
\frac{d \delta\left(G^{E} / R T\right)}{d x_{1}}=\delta \ln \frac{\gamma_{1}}{\gamma_{2}}-\left(x_{1} \frac{d \ln \gamma_{1}^{*}}{d x_{1}}+x_{2} \frac{d \ln \gamma_{2}^{*}}{d x_{1}}\right)
\end{array}
$$

where

$$
N_{1} d \ln \gamma_{1}+N_{2} d \ln \gamma_{2}=0
$$

The Gibbs/Duhem equation

Thermodynamic Consistency

- If a data set is reduced so as to make the residuals in $G^{E} / R T$ scatter about zero,

$$
\delta \ln \frac{\gamma_{1}}{\gamma_{2}}=x_{1} \frac{d \ln \gamma_{1}^{*}}{d x_{1}}+x_{2} \frac{d \ln \gamma_{2}^{*}}{d x_{1}}
$$

- This is the direct measure of deviations from the Gibbs-Duhem equation. The extent to which a data set departs from consistency is measured by the degree to which these residuals fail to scatter about zero

Table 13.5: VLE Data for Diethyl Ketone(1) $/ n$-Hexane(2) at $\mathbf{6 5}{ }^{\circ} \mathrm{C}$

P / kPa	x_{1}	y_{1}	$\ln \gamma_{1}^{*}$	$\ln \gamma_{2}^{*}$	$\left(\frac{G^{E}}{x_{1} x_{2} R T}\right)^{*}$
$90.15\left(P_{2}^{\text {sat }}\right)$	0.000	0.000		0.000	
91.78	0.063	0.049	0.901	0.033	1.481
88.01	0.248	0.131	0.472	0.121	1.114
81.67	0.372	0.182	0.321	0.166	0.955
78.89	0.443	0.215	0.278	0.210	0.972
76.82	0.508	0.248	0.257	0.264	1.043
73.39	0.561	0.268	0.190	0.306	0.977
66.45	0.640	0.316	0.123	0.337	0.869
62.95	0.702	0.368	0.129	0.393	0.993
57.70	0.763	0.412	0.072	0.462	0.909
50.16	0.834	0.490	0.016	0.536	0.740
45.70	0.874	0.570	0.027	0.548	0.844
$29.00\left(P_{1}^{\text {sat }}\right)$	1.000	1.000	0.000		

Figure 13.9: Consistency test of data for diethyl ketone(1)/n-hexane(2) at $65^{\circ} \mathrm{C}$.

Not consistent with thermos (heavily concentrated on one side)

Models for the Excess Gibbs Energy

Min Huang, PhD
Chemical Engineering Program Tongji Univ

Models for the Excess Gibbs Energy

- $G^{E} / R T$ is a function of T, P, and composition,

$$
\bar{G}_{i}^{E}=R T \ln \gamma_{i}
$$

- Therefore,

$$
\frac{G^{E}}{R T}=\sum_{i} x_{i} \ln \gamma_{i}
$$

- But for liquids at low to moderate pressures it is a very weak function of P. Therefore the pressure dependence of activity coefficients is usually neglected.

Models for the Excess Gibbs Energy

- Thus,

$$
\frac{G^{E}}{R T}=g\left(x_{1}, x_{2}, \ldots, x_{N}\right)
$$

- For binary systems, the function most often represented by a power series in x_{1}

$$
\frac{G^{E}}{x_{1} x_{2} R T}=a+b x_{1}+c x_{1}^{2}+\cdots
$$

Models for the Excess Gibbs Energy

- Since $x_{2}=1-x_{1}$, therefore,

$$
\frac{G^{E}}{x_{1} x_{2} R T}=A+B\left(x_{1}-x_{2}\right)+C\left(x_{1}-x_{2}\right)^{2}+\cdots
$$

- This is know as the Redlich/Kister expansion which is the most commonly used polynomial in regular and subregular solution models

Regular Solution

- Recall $\bar{G}_{i}^{i d}=G_{i}+R T \ln x_{i}$

$$
\begin{aligned}
\overline{\Delta G_{i}^{i d}} & =R T \ln x_{i}=\overline{\Delta H_{i}^{i d}}+T \overline{\Delta S_{i}^{i d}} \\
\text { - Let } \quad \overline{\Delta G_{i}^{R S}} & =\overline{G_{i}^{R S}}-\overline{G_{i}^{i d}}
\end{aligned}
$$

- Regular solution is an non ideal solution with small deviation from ideal solution
- Regular solution is defined as a solution possesses an enthalpy of mixing but no entropy of mixing.

Regular Solution

- That is

$$
\begin{aligned}
& \overline{\Delta G^{R S}}=\overline{\Delta H^{R S}}-T \overline{\Delta S^{R S}} \\
& =\overline{\Delta H^{R S}}-T \overline{\Delta S^{i d}}
\end{aligned}
$$

- Since

$$
\overline{\Delta G_{i}^{i d}}=\overline{\Delta H_{i}^{I d}}-T \overline{\Delta S_{i}^{i d}}
$$

- Therefore,

$$
\overline{G_{i}^{R S}}-\overline{G_{i}^{i d}}=\overline{H_{i}^{R S}}-\overline{H_{i}^{i d}}=\overline{\Delta H_{i}^{R S}}
$$

Enthalpy of Regular Solution

- The word regular implies that the molecules mix in a completely random manner, which means that there is no segregation or preference.
- Consider two neighbors in a solution. The probability that one of the neighbors is A or B is simply

$$
\begin{aligned}
& P_{A}=\frac{N_{A}}{N_{A}+N_{B}}=x_{A} \\
& P_{B}=\frac{N_{B}}{N_{A}+N_{B}}=x_{B}
\end{aligned}
$$

Enthalpy of Regular Solution

- Therefore the probability that a given "bond" is \mathbf{A} - B type is

$$
P_{(A B)}=P_{A B}+P_{B A}=\frac{2 N_{A} N_{B}}{\left(N_{A}+N_{B}\right)^{2}}=2 x_{A} x_{B}
$$

- If each atom has \mathbf{z} nearest neighbors, the number of bonds, total, is

$$
B^{\text {total }}=\frac{z}{2}\left(N_{A}+N_{B}\right), \quad \underline{B^{\text {total }}}=\frac{z}{2}
$$

Enthalpy of Regular Solution

- The bond density of A-B type is:

$$
B_{(A B)}=P_{(A B)} \underline{B^{\text {total }}}=z x_{A} x_{B} \quad \mathrm{AB}+\mathrm{BA}
$$

- If the energy per bond is $\mathbf{w}_{(A B)}$ then the enthalpy density (due to the A-B bonds) is:

$$
\underline{H_{(A B)}^{R S}}=z w_{(A B)} x_{A} x_{B}
$$

- Similarly

$$
\begin{aligned}
& \frac{H_{(A A)}^{R S}}{R S}=\frac{z}{2} w_{(A A)} x_{A} x_{A}, \quad P_{(A A)}=x_{A}^{2} \\
& \underline{H_{(B B)}^{R S}}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\Delta H_{\text {mixing }}}=\underline{H^{\text {sol }}}-\underline{H^{\text {pure }}} \\
& \underline{H_{m i x}}=z x_{A} x_{B} w_{A B}+\left(\frac{Z}{2} x_{A} x_{A} w_{A A}+\frac{Z}{2} x_{B} x_{B} w_{B B}\right) \\
& \underline{H_{(A B)}^{R S}}=\frac{Z}{2} x_{A} x_{B}\left(2 w_{A B}+\frac{x_{A}}{x_{A} x_{B}} x_{A} w_{A A}+\frac{x_{B}}{x_{A} x_{B}} x_{B} w_{B B}\right) \\
& =\frac{Z}{2} x_{A} x_{B}\left(2 w_{A B}+\frac{1-x_{B}}{x_{A} x_{B}} x_{A} w_{A A}+\frac{1-x_{A}}{x_{A} x_{B}} x_{B} w_{B B}\right) \\
& \left.\underline{H}^{i d}=\sum_{i} x_{i} \underline{H}_{i}+\frac{\frac{Z}{2} x_{A} x_{B}\left(2 w_{A B}+\frac{-x_{B}}{x_{A} x_{B}} x_{A} w_{A A}+\frac{-x_{A}}{x_{A} x_{B}} x_{B} w_{B B}\right.}{x_{A} x_{B}+x_{B} w_{B B}}\right) \\
& \Delta \underline{H_{(A B)}^{R S}}=\frac{Z}{2} x_{A} x_{B}\left(2 w_{A B}-w_{A A}-w_{B B}\right) \\
& =\frac{Z}{2} x_{A} x_{B} w^{R S}
\end{aligned}
$$

Regular Solution

- According to the definition of Regular solution, entropy of mixing equals to ideal solution
- Therefore,

$$
\begin{aligned}
\underline{\Delta G_{(A B)}^{R S}} & ={\underline{\Delta H_{(A B)}^{R S}}-T \Delta S_{(A B)}^{i d}}^{z} \\
& =\frac{Z}{2} x_{A} x_{B} w^{R S}-T(-R)\left(x_{A} \ln x_{A}+x_{B} \ln x_{B}\right) \\
\underline{G^{E, R S}} & =\underline{G}^{R S}-\underline{G}^{i d}=\Delta \underline{G}^{R S}-\Delta \underline{G}^{i d}+\underline{G}^{0}-\underline{G}^{0} \\
\underline{G^{E, R S}} & =\frac{z}{2} x_{A} x_{B} w^{R S} \equiv \omega x_{A} x_{B}
\end{aligned}
$$

$$
\begin{gathered}
\underline{H_{(A B)}^{R S}}=x_{A} \bar{H}_{A}^{R S}+x_{B} \bar{H}_{B}^{R S} \longrightarrow \frac{\partial H_{(A B)}^{R S}}{\partial x_{B}}=-\bar{H}_{A}^{R S}+\bar{H}_{B}^{R S} \\
x_{A}\left(\frac{\partial \underline{H_{(A B)}^{R S}}}{\partial x_{B}}\right)=-x_{A} \bar{H}_{A}^{R S}+x_{A} \bar{H}_{B}^{R S} \\
x_{A}\left(\frac{\partial\left(\frac{H_{(A B)}^{R S}}{\partial X_{B}}\right)=-x_{A} \bar{H}_{A}^{R S}+\left(1-x_{B}\right) \bar{H}_{B}^{R S}=\bar{H}_{B}^{R S}-x_{A} \bar{H}_{A}^{R S}-x_{B} \bar{H}_{B}^{R S}}{\underline{-H_{(A B)}^{R S}}}\right. \\
\frac{H_{(A B)}^{R S}}{}+x_{A}\left(\frac{\partial \underline{H_{(A B)}^{R S}}}{\partial x_{B}}\right)=\vec{H}_{B}^{R S}
\end{gathered}
$$

Regular Solution

$$
\begin{aligned}
& \bar{H}_{B}^{E, R S}=\underline{H_{(A B)}^{R S}}+x_{A}\left(\frac{\partial \underline{H_{(A B)}^{R S}}}{\partial x_{B}}\right) \\
& =\omega x_{A} x_{B}+x_{A}\left(\frac{\partial\left(\omega x_{A} x_{B}\right)}{\partial x_{B}}\right) \\
& =\omega x_{A} x_{B}+x_{A} \omega\left(x_{A}-x_{B}\right) \\
& =\omega x_{A}^{2}
\end{aligned}
$$

Regular Solution

- Since $\bar{G}_{i}=\bar{\sigma}_{i}^{E D}=R T \ln \gamma_{i}$
- Therefore,

$$
\begin{aligned}
& \frac{\bar{G}_{A}^{E, R S}}{R T}=\ln \gamma_{A}=\frac{\omega}{R T} x_{B}^{2} \\
& \frac{\bar{G}_{B}^{E, R S}}{R T}=\ln \gamma_{B}=\frac{\omega}{R T} x_{A}^{2}
\end{aligned}
$$

Otto Redlich AND A. T. Kister Expansion

- Recall

$$
\frac{\frac{G^{E}}{R T}}{\underset{R}{ }}=\sum_{i} x_{i} \ln \gamma_{i}
$$

- For binary system,

$$
\begin{aligned}
& \frac{G^{E}}{R T}=x_{1} \ln \gamma_{1}+x_{2} \ln \gamma_{2} \\
& \frac{d\left(\frac{G^{E}}{R T}\right)}{d x_{1}}=\ln \left(\frac{\gamma_{1}}{\gamma_{2}}\right)
\end{aligned}
$$

$$
\frac{d\left(\frac{G^{E}}{R T}\right)}{d x_{1}}=\ln \gamma_{1}-\ln \gamma_{2}
$$

$$
\left(1-x_{1}\right) \frac{d\left(\frac{G^{E}}{R T}\right)}{d x_{1}}=\left(1-x_{1}\right)\left(\ln \gamma_{1}-\ln \gamma_{2}\right)
$$

$$
\begin{aligned}
& =\left(1-x_{1}\right) \ln \gamma_{1}-\left(1-x_{1}\right) \ln \gamma_{2} \\
& =\ln \gamma_{1}-x_{1} \ln \gamma_{1}-x_{2} \ln \gamma_{2} \\
& =\ln \gamma_{1}-\frac{G^{E}}{R T}
\end{aligned}
$$

$$
\frac{G^{E}}{R T}=x_{1} \ln \gamma_{1}+x_{2} \ln \gamma_{2}
$$

$$
\frac{d\left(\frac{G^{E}}{R T}\right)}{d x_{1}}=\ln \gamma_{1}-\ln \gamma_{2}
$$

$$
\left(1-x_{2}\right) \frac{d\left(\frac{G^{E}}{R T}\right)}{d x_{1}}=\left(1-x_{2}\right)\left(\ln \gamma_{1}-\ln \gamma_{2}\right)
$$

$$
\begin{aligned}
& =x_{1} \ln \gamma_{1}-\left(1-x_{2}\right) \ln \gamma_{2} \\
= & x_{1} \ln \gamma_{1}+x_{2} \ln \gamma_{2}-\ln \gamma_{2}
\end{aligned}
$$

$$
=-\ln \gamma_{2}+\frac{G^{E}}{R T}
$$

$$
\frac{G^{E}}{R T}=x_{1} \ln \gamma_{1}+x_{2} \ln \gamma_{2}
$$

- Therefore,

$$
\begin{aligned}
& \ln \gamma_{1}=\left(\frac{G^{E}}{R T}\right)+\left(1-x_{1}\right) \frac{d\left(\frac{G^{E}}{R T}\right)}{d x_{1}} \\
& \ln \gamma_{2}=\left(\frac{G^{E}}{R T}\right)-x_{1} \frac{d\left(\frac{G^{E}}{R T}\right)}{d x_{1}}
\end{aligned}
$$

- Let $Q=\frac{G^{E}}{R T}$

Otto Redlich AND A. T. Kister Expansion

- Since $Q=0$ for $x=0$ and $x_{1}=1$, each term must contain the factor $x_{1}\left(1-x_{1}\right)$.
- Introduce the expansion,
$\frac{G^{E}}{R T}=Q=x_{1}\left(1-x_{1}\right)\left(B+C\left(2 x_{1}-1\right)+D\left(2 x_{1}-1\right)^{2}+\cdots\right)$
- The coefficients may be determined by

$$
\frac{Q}{x_{1}\left(1-x_{1}\right)}=\frac{\ln \gamma_{1}}{1-x_{1}}+\frac{\ln \gamma_{2}}{x_{1}}
$$

- This is know as the Redlich/Kister expansion

Otto Redlich AND A. T. Kister Expansion

- Or $\ln \left(\frac{\gamma_{1}}{\gamma_{2}}\right)=\frac{d Q}{d x_{1}}=B\left(1-2 x_{1}\right)+C\left(6 x_{1}\left(1-x_{1}\right)-1\right)+\cdots$
- Case 1, ideal solution

$$
\ln \left(\frac{\gamma_{1}}{\gamma_{2}}\right)=0
$$

- Case 2, B $\neq \mathbf{0}, \mathbf{C}, \mathrm{D}, \ldots=\mathbf{0}$, a form of regular
- Case 3, B $\neq 0, C \neq 0, D, E, \ldots=0$, subregular

Excess Gibbs Free Energy and Gibbs-Duhem Equation

If $\underline{G}^{e x}(T, P, \underline{x})=a x_{1} x_{2}$ then $\bar{G}_{1}^{e x}=a x_{2}^{2}=R T \ln \gamma_{1}, \bar{G}_{2}^{e x}=a x_{1}^{2}=R T \ln \gamma_{2}$

$$
\begin{aligned}
& \frac{\partial\left(n \underline{G}^{e x}\right)}{\partial n_{1}}=\frac{a n_{1} n_{2}}{n}=\frac{\partial\left(\frac{a n_{1} n_{2}}{n}\right)}{\partial n_{1}} \\
& =a \frac{n}{n^{2}} \frac{\partial\left(n_{1} n_{2}\right)}{\partial n_{1}}-a \frac{1}{n^{2}}\left(n_{1} n_{2}\right) \\
& =\frac{a}{n} n_{2} \frac{\partial\left(n_{1}\right)}{\partial n_{1}}+\frac{a}{n} n_{1} \frac{\partial\left(n_{2}\right)}{\partial n_{1}}-a \frac{1}{n^{2}}\left(n_{1} n_{2}\right) \\
& =\frac{a}{n} n_{2}+\frac{a}{n} n_{1} \frac{\partial\left(n-n_{1}\right)}{\partial n_{1}}-a \frac{1}{n^{2}}\left(n_{1} n_{2}\right) \\
& =\frac{a}{n} n_{2}-a \frac{1}{n^{2}}\left(n_{1} n_{2}\right)=a\left(x_{2}-x_{2}+x_{2}^{2}\right)=a x_{2}^{2}
\end{aligned}
$$

Excess Gibbs Free Energy and Gibbs-Duhem Equation

$$
\begin{gathered}
\underline{G}^{e x}(T, P, \underline{x})=a x_{1} x_{2} \quad \bar{G}_{1}^{e x}=a x_{2}^{2}=R T \ln \gamma_{1} \quad \bar{G}_{2}^{e x}=a x_{1}^{2}=R T \ln \gamma_{2} \\
\left.\sum_{i=1}^{c} x_{i} d \bar{G}_{i}^{e x}\right|_{T, P}=x_{1} d \bar{G}_{1}^{e x}+x_{2} d \bar{G}_{2}^{e x}=x_{1} d\left(a x_{2}^{2}\right)+x_{2} d\left(a x_{1}^{2}\right) \\
=2 a x_{1} x_{2}\left(d x_{2}+d x_{1}\right)=2 a x_{1} x_{2} d\left(x_{1}+x_{2}\right)=0 \\
x_{1}\left(\frac{\partial \ln \gamma_{1}}{\partial x_{1}}\right)_{T, P}+x_{2}\left(\frac{\partial \ln \gamma_{2}}{\partial x_{1}}\right)_{T, P}=x_{1} \frac{a}{R T}\left[\frac{\partial\left(1-x_{1}\right)^{2}}{\partial x_{1}}\right]_{T, P}+x_{2} \frac{a}{R T}\left[\frac{\partial\left(1-x_{2}\right)^{2}}{\partial x_{1}}\right]_{T, P} \\
\\
=-\frac{2 a x_{1}}{R T}\left(1-x_{1}\right)+x_{2} \frac{a}{R T}\left[\frac{\partial x_{1}^{2}}{\partial x_{1}}\right]=-\frac{2 a x_{1} x_{2}}{R T}+\frac{2 a x_{1} x_{2}}{R T}=0
\end{gathered}
$$

All activity coefficients derived from an excess Gibbs free energy expression that satisfies boundary conditions of being zero at $x_{l}=0$ and 1 will satisfy the Gibbs-Duhem equation.
at $x_{1}=0$ and $x_{1}=1 \quad \underline{G}^{e x}=0 \quad$ then the activity coefficients satisfy $\quad 0=\sum_{i=1}^{c} x_{i} d \ln \gamma_{i_{T, P}}$

Infinite dilution

- As a solution becomes pure in species i, both properties approach pure species property

$$
\lim _{x_{i} \rightarrow 1} \theta=\lim _{x_{i} \rightarrow 1} \bar{\theta}_{i}=\theta_{i}
$$

- In the limit of infinite dilution

$$
\lim _{x_{i} \rightarrow 0} \bar{\theta}_{i}=\bar{\theta}_{i}^{\infty}
$$

- For a binary solution

$$
\begin{aligned}
& \theta=x_{1} \bar{\theta}_{1}+x_{2} \bar{\theta}_{2} \\
& d \theta=x_{1} d \bar{\theta}_{1}+\bar{\theta}_{1} d x_{1}+x_{2} d \bar{\theta}_{2}+\bar{\theta}_{2} d x_{2}
\end{aligned}
$$

- Gibbs-Duhem equation is

$$
x_{1} d \bar{\theta}_{1}+x_{2} d \bar{\theta}_{2}=0
$$

- Dividing by $d x_{1}$, we have the Gibbs-Duhem equation in derivative forms

$$
x_{1} \frac{d \bar{\theta}_{1}}{d x_{1}}+x_{2} \frac{d \bar{\theta}_{2}}{d x_{1}}=0
$$

- Since $x_{1}+x_{2}=1, d x_{1}=-d x_{2}$
- therefore $\frac{d \theta}{d x_{1}}=\bar{\theta}_{1}-\bar{\theta}_{2}$,

$$
\begin{array}{|c}
d \underline{\theta}=\bar{\theta}_{1} d x_{1}+\bar{\theta}_{2} d x_{2} \\
\frac{d \underline{\theta}}{d x_{1}}=\bar{\theta}_{1}+\bar{\theta}_{2} \frac{d x_{2}}{d x_{1}} \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \underline{\theta}=\bar{\theta}_{1}-x_{2}\left(\bar{\theta}_{1}-\bar{\theta}_{2}\right)=\bar{\theta}_{1}-x_{2} \frac{d \theta}{d x_{1}} \\
& \underline{\theta}=\bar{\theta}_{2}+x_{1}\left(\bar{\theta}_{1}-\bar{\theta}_{2}\right)=\bar{\theta}_{2}+x_{1} \frac{d \theta}{d x_{1}}
\end{aligned}
$$

$$
\begin{gathered}
\underline{\theta}=x_{1} \bar{\theta}_{1}+x_{2} \bar{\theta}_{2} \\
\underline{\theta}=\left(1-x_{2}\right) \bar{\theta}_{1}+x_{2} \bar{\theta}_{2} \\
\underline{\theta}=x_{1} \bar{\theta}_{1}+\left(1-x_{1}\right) \bar{\theta}_{2}
\end{gathered}
$$

- Therefore,

$$
\bar{\theta}_{1}=\theta+x_{2} \frac{d \theta}{d x_{1}} \quad \bar{\theta}_{2}=\theta-x_{1} \frac{d \theta}{d x_{1}}
$$

- These equations can be used to obtain partial molar properties from experiment solution property.

Figure 11.1: (a) Graphical construction of Example 11.2. (b) Infinite-dilution values of partial properties.

$$
\begin{array}{|l}
\hline \bar{V}_{1}=V+x_{2} \frac{d V}{d x_{1}} \\
\bar{V}_{2}=V-x_{1} \frac{d V}{d x_{1}} \\
\hline
\end{array}
$$

Figure 11.2: Molar volumes for methanol(1)/water(2) at $25^{\circ} \mathrm{C}$ and 1 (atm). Numerical values relate to Ex. 11.3.
$\lim _{x_{i} \rightarrow 1} V=\lim _{x_{i} \rightarrow 1} \bar{V}_{i}=V_{i}$
$\lim _{x_{i} \rightarrow 0} \bar{V}_{i}=\bar{V}_{i}^{\infty}$

Example

$$
\begin{aligned}
& H=400 x_{1}+600 x_{2}+x_{1} x_{2}\left(40 x_{1}+20 x_{2}\right) \\
& x_{2}=1-x_{1} \\
& H=600-180 x_{1}-20 x_{1}^{3} \\
& \frac{d H}{d x_{1}}=-180-60 x_{1}^{2} \\
& \bar{H}_{1}=H+x_{2} \frac{d H}{d x_{1}} \quad \bar{H}_{2}=H-x_{1} \frac{d H}{d x_{1}} \\
& \bar{H}_{1}=420-60 x_{1}^{2}+40 x_{1}^{3} \quad \bar{H}_{2}=600+40 x_{1}^{3} \\
& \bar{H}_{1}^{\infty}=420 \quad \bar{H}_{2}^{\infty}=640
\end{aligned}
$$

Activity Coefficient Model

$$
\ln \gamma_{i}=\bar{G}_{i}^{e x} / R T \quad \underline{G}^{e x} / R T=\sum_{i} x_{i} \ln \gamma_{i}
$$

- Random mixing assumption (Wohl's expansion):

$$
\frac{G^{e x}}{R T \sum_{i} q_{i} x_{i}}=\sum_{i} \sum_{j} a_{i j} z_{i} z_{j}+\sum_{i} \sum_{j} \sum_{k} a_{i j k} z_{i} z_{j} z_{k}+\ldots .
$$

- Redlich-Kister model
- Margules model
- van Laar model

Margules' Equations

-While the simplest Redlich/Kister-type correlation is the Symmetric Equation, but a more accurate equation is the Margules correlation:
-let,

$$
\frac{G^{E}}{R T x_{1} x_{2}}=A_{21} x_{1}+A_{12} x_{2}
$$

$$
\ln \gamma_{1}^{\infty}=\left.\lim _{x_{1} \rightarrow 0} \frac{G^{E}}{R T x_{1} x_{2}} \quad \frac{G^{E}}{R T x_{1} x_{2}}\right|_{x_{1} \rightarrow 0}=A_{12} \quad x_{1} \rightarrow 0, x_{2} \rightarrow 1
$$

-so that

$$
\begin{aligned}
& A_{12}=\ln \gamma_{1}^{\infty} \\
& A_{21}=\ln \gamma_{2}^{\infty}
\end{aligned}
$$

Margules' Equations

-If you have Margules parameters, the activity coefficients can be derived from the excess Gibbs energy expression:
-to yield:

$$
\begin{gathered}
\frac{G^{E}}{R T x_{1} x_{2}}=A_{21} x_{1}+A_{12} x_{2} \\
\ln \gamma_{1}=x_{2}^{2}\left[A_{12}+2\left(A_{21}-A_{12}\right) x_{1}\right] \\
\ln \gamma_{2}=x_{1}^{2}\left[A_{21}+2\left(A_{12}-A_{21}\right) x_{2}\right]
\end{gathered}
$$

-These empirical equations are widely used to describe binary solutions. A knowledge of A_{12} and A_{21} at the given T is all we require to calculate activity coefficients for a given solution composition.

Van Laar Correlation

-Another two-parameter excess Gibbs energy model was developed from an expansion of $\left(R^{T} x_{1} x_{2}\right) / G^{E}$ instead of $G^{E} / R T x_{1} x_{2}$. The end results are:

$$
\frac{G^{E}}{R T x_{1} x_{2}}=\frac{A_{12}^{\prime} A_{21}^{\prime}}{A_{12}^{\prime} x_{1}+A_{21}^{\prime} x_{2}}
$$

-for the excess Gibbs energy and:

$$
\ln \gamma_{2}=A_{21}^{\prime}\left(1+\frac{A_{21}^{\prime} x_{2}}{A_{12}^{\prime} x_{1}}\right)^{-2} \quad \ln \gamma_{1}=A_{12}^{\prime}\left(1+\frac{A_{12}^{\prime} x_{1}}{A_{21}^{\prime} x_{2}}\right)^{-2}
$$

-for the activity coefficients.
-as $\mathrm{x}_{1} \rightarrow 0, \ln \gamma_{1}{ }^{\infty}=\mathrm{A}_{12}^{\prime}$ as $\mathrm{x}_{2} \rightarrow 0, \ln \gamma_{2}{ }^{\infty}=\mathrm{A}_{21}^{\prime}$

