
Mathematical Modeling of 

Chemical Processes

Part II



Continuous Stirred-Tank Reactor 

(CSTR)



Continuous Stirred-Tank Reactor 

(CSTR)

Assumptions 

– neglected heat capacity of inner walls of 

the reactor, constant density and specific 

heat capacity of liquid, 

– constant reactor volume, constant overall 

heat transfer coefficient, and 

– constant and equal input and output 

volumetric flow rates. 

– the reactor is well-mixed.



Control loop for the Stirred 

Heating Tank



Mathematical model of a 

thermocouple

q0

qj

qiqi

q0

a) bare thermocouple b)  thermocouple with protect jacket



Blending system Control Method



Modeling the pneumatic control 

valve

 

p1

p2

q



Element Time Responses 

• first order element

– Transfer function

)()(
)(

tKxty
dt

tdy


1)(

)(
)(




s

K

sX

sY
sG





Element Time Responses

• Step input x(t) = MU(t)

– When M =1 (unit step input),
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Element Time Responses



Element Time Responses

• Second order element
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Second order element

• Given a step input x(t) = MU(t),

• Use notations in Chapter 4, and let M=1 

(unit step)
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Second order element

• Factoring the denominator

• Case A damping ratio equals unity  = 1
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Second order element

• Partial fraction expansion

• The time domain responses of output
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Second order element

• Case B damping ratio greater than 

unity  > 1
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Second order element

• The time domain responses of output

• Case C damping ratio less than unity 
< 1

Let
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Second order element

• Partial fraction expansion

• The time domain responses of output
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Step responses of a second 

order element over damped  ≥1 

 



Step responses of a second order 

element under damped  <1

 



Second order underdamped 

response specifications



Performance specifications of a 

second-order system

• Let 

• We have

• therefore
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Performance specifications of a 

second-order system

• Peak time Tp, the time required to reach 

the first peak

• Percent overshoot, %OS is the amount 

that the waveform overshoots the final 

steady-state
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Performance specifications of a 

second-order system

• Settling time Ts , the time required for 
damped oscillations to reach and stay 
within±2% of the steady-state (final) 
value

• Rise time Tr is the time required for the 
waveform to go from 0.1 to 0.9 of the 
final value
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Location of the Roots in the 

s-plane and  the Transient 

Response

s-plane

  = 0

0 <  < 1

 ≥ 1

s

s < 0
s > 0



Element Time Response

• Proportional element

It is a step with KM as its magnitude

• Integral element

It is a ramp at the slop of KM/i

• Differential element

It is a impulse

• Delay element

It is a step after a time delay of 



Development of Empirical 

Dynamic Models from Step 

Response Data

Higher order system and dead time



Higher order system and dead 

time



Approximate using first-order-

plus-time-delay model

• The response attains 63.2% of its final 
response at one time constant (t =   q )

• The line drawn tangent to the response 
at maximum slope (t = q) intersects the 
100% line at (t =  q ). 

• K is found from the steady state 
response for an input change magnitude 
M.  The step response is essentially 
complete at t = 5.



Approximate using first-order-

plus-time-delay model

q

Inflection point



Time Constant

Inflection point



Time Constant



Sundaresan and Krishnaswamy’s

Inflection point of the process reaction 

curve is too arbitrary and difficult to 

determine when data is noisy

• Step 1 take 35.3% response time t1

• Step 2 take 85.3% response time t2

• Substitute into the equations
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Time Constant

35.3%

85.3%

t1 t2

63.2%



Second-order Model

In general, a better approximation to an 

experimental step response can be 

obtained by fitting a second-order 

model to the data 

The larger of the two time constants,  1, 
is called the dominant time constant
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Second-order Model

• Two limiting cases: 

–  1/ 2 = 0, where the system becomes first 
order, and, 

–  1/ 2 = 1, the critically damped case ( =1)

• Determine t20 and t60 from the step 
response.

• Findζand t60 / from Figure 14.

• Find t60 / from Figure 14 and then 
calculate  (since t60 is known).



Second-order Model

 

t20 t60



Second-order Model

 



Modeling Second-order Through 

Least Square Fit

• For unit step input

• Assume c(t) takes the form,

where css is the final-value of c(t)
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Modeling Second-order Through 

Least Square Fit

• Step 1: Least square fit first term

The intercept is log K1

The slope is 0.4343a
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Modeling Second-order Through 

Least Square Fit

• Step 2: Subtract the line fitted from the 

experimental data

The intercept is log K2

The slope is 0.4343b

    btKeKctc at
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Modeling Second-order Through 

Least Square Fit

• Step 3: Adjustment to have c(0) = 0,

– Let

– Now we have,
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Time Responses Using State 

Variable Method

• For non zero second order system,

• Divide s2 on both numerator and 

denominator,
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Time Responses Using State 

Variable Method

• Define,

• Therefore,
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Time Responses Using State 

Variable Method

The state-variable signal-flow graph,

n2ζω
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R(s)

X2(s) X1(s)

C(s)2

nωS-1S-11
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E(s)



• Example

• Laplace transform,

• then

)()(3)(4)( trtctctc  

21

2

2

341
     

34

1

)(

)(











ss

s

sssR

sC

21 341

)(
)(

 


ss

sR
sE

)(3)(4)()(

)()(
21

2

sEssEssRsE

sEssC












4

3

R(s)

X2(s) X1(s)

C(s)2

nωs-1s-11

s-1 s-1

x2(0) x1(0)

E(s)

• Quiz 15 min 

• Use Mason’s theory to find X1(s) and X2(s)






