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IDEAL GAS MIXTURE 



Relating p, V, and T for Ideal Gas 
Mixtures 

• The Dalton model: the Dalton model assumes that 
each mixture component behaves as an ideal gas as 
if it were alone at the temperature T and volume V of 
the mixture. Individual components would not exert 
the mixture pressure p but rather a partial pressure. 
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Ideal Gas Mixture Properties 

• Consider the internal energy and enthalpy of an ideal 
gas mixture.  Recall that 

 

 

 

• For ideal gas,  pv=nRT, The components of the 
mixture exist at the same temperature as the 
mixture. 
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• Therefore, 

 

 

 

• What about the entropy of an ideal gas? 

 

 

• The mixture must obey the Dalton model 
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• Therefore, 

 

 

• Then 

 

 

 

 

 

• where 
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• For the Gibbs energy of an ideal-gas mixture  

• Gig = Hig – TSig, 
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summary 

Using Dalton’s Law ... 
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• Amagat model is that each mixture component 
behaves as an ideal gas as if it existed separately at 
the pressure p and temperature T of the mixture. 
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EXAMPLE 1 

• Converting Mole Fractions to Mass Fractions 

• The molar analysis of the gaseous products of 
combustion of a certain hydrocarbon fuel is CO2, 0.08; 
H2O, 0.11; O2, 0.07; N2, 0.74.  

– (a)Determine the apparent molecular weight of the 
mixture.  

– (b)Determine the composition in terms of mass fractions. 

• Solution 

– (a) M = 0.08(44)+ 0.11(18)+ 0.07(32) + 0.74(28)           
=28.46 g/mol 



– (b)  

 
component ni × Mi = mi i(%) 

CO2 0.08 × 44 = 3.52 12.37 

H2O 0.11 × 18 = 1.98 6.96 

O2 0.07 × 32 = 2.24 7.87 

N2 0.74 × 28 = 20.72 72.8 

  1.00       28.46 100 



• Converting Mass Fractions to Mole Fractions 

• A gas mixture has the following composition in terms 
of mass fractions: H2, 0.10; N2, 0.60; CO2, 0.30. 
Determine  

– (a) the composition in terms of mole fractions and  

– (b)the apparent molecular weight of the mixture. 

• Solution 

 

 

 

 

 

– (b) M = m/n = 100/78.2 = 12.79 g/mol 

Component mi ÷ Mi = ni yi(%) 

H2 10 ÷ 2 = 5.00 63.9 

N2 60 ÷ 28 = 2.14 27.4 

CO2 30 ÷ 44 = 0.68 8.7 

  100       7.82 100 



EXAMPLE 2 

• Compressing an Ideal Gas Mixture 

• A mixture of 0.3 kg of carbon dioxide and 0.2 kg of 
nitrogen is compressed from p1=1 bar,T1=300 K to 
p2=3 bars in a polytropic process for which k=1.25. 
Determine 

– (a) the final temperature, in K,  

– (b) the work, in kJ, 

– (c) the heat transfer, in kJ, 

– (d) the change in entropy of the mixture, in kJ/K. 



• Assume 
• As shown in the accompanying figure, the system is the mixture of 

CO2 and N2. The mixture composition remains constant during the 
compression. 

• Each mixture component behaves as if it were an ideal gas 
occupying the entire system volume at the mixture temperature. 
The overall mixture acts as an ideal gas. 

• The compression process is a polytropic process for which k=1.25. 
• The changes in kinetic and potential energy between the initial and 

final states can be ignored. 



• (a) For an ideal gas, the temperatures and pressures 
at the end states of a polytropic process,  

 

 

• (b) 

 

 

 

• m = 0.3+0.2, n = nCO2 + nN2,  M = m/n 
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• (c) The change in internal energy of the mixture 
equals the sum of the internal energy changes of the 
components. 
 

 

 

• Inserting values for DU and W into the expression for 
Q: 

 

• (d)  
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EXAMPLE 3 

• Gas Mixture Expanding Isentropically through a 
Nozzle 

• A gas mixture consisting of CO2 and O2 with mole 
fractions 0.8 and 0.2, respectively, expands 
isentropically and at steady state through a nozzle 
from 700 K, 5 bars, 3 m/s to an exit pressure of 1 bar. 
Determine  
– (a) the temperature at the nozzle exit, in K,  

– (b) the entropy changes of the CO2 and O2 from inlet to 
exit, in   

– (c) the exit velocity, in m/s. 



• Assume 
• The control volume shown by the dashed line on the 

accompanying figure operates at steady state. 
• The mixture composition remains constant as the mixture 

expands isentropically through the nozzle. The overall mixture 
and each mixture component act as ideal gases. The state of 
each component is defined by the temperature and the 
partial pressure of the component. 

• The change in potential energy between inlet and exit can be 
ignored. 



• solution 

• (a) The temperature at the exit can be determined 
using the fact that the expansion occurs 
isentropically 

 

     therefore 
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    T1 = 700oC 

 

 

 

    Through iteration, T2 = 517.6 K 

•(b) The change in the specific entropy for each of the 
components can be determined using 
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• (c) The energy rate balance for the one-inlet, one-
exit control volume at steady state 

 

 

 

 

• where apparent molecular weight 
M=(0.8)44+0.2(32)=41.6 kg/kmol 

 

 

 

• v2 = 624 m/s 
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EXAMPLE 4 

• Adiabatic Mixing at Constant Total Volume 

• Two rigid, insulated tanks are interconnected by a valve. 
Initially 0.79 kmol of N2 at 2 bars and 250 K fills one tank. 
The other tank contains 0.21 kmol of O2 at 1 bar and 300 
K. The valve is opened and the gases are allowed to mix 
until a final equilibrium state is attained. During this 
process, there are no heat or work interactions between 
the tank contents and the surroundings. Determine  
– (a)the final temperature of the mixture, in K, 

– (b)the final pressure of the mixture, in atm, 

– (c)the amount of entropy produced in the mixing process, in 
kJ/K. 



• Assumptions: 

• 1.  The system is taken to be  

     the nitrogen and the oxygen  

     together. 

• 2.When separate, each of the 

     gases behaves as an ideal gas.  

     The final mixture also acts as  

     an ideal gas. Each mixture  

     component occupies the total volume and exhibits the   

      mixture temperature. 

• 3.No heat or work interactions occur with the surroundings, 
and there are no changes in kinetic and potential energy. 



• Solution 

• (a) The final temperature of the mixture can be 
determined from an energy balance. With 
assumption 3, the closed system energy balance 
reduces to 
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• (c) the closed system form of the entropy balance 

 

 

• The initial entropy of the system,S1, is the sum of the 
entropies of the gases at the respective initial states 

 

• The final entropy of the system,S2, is the sum of the 
entropies of the individual components, each 
evaluated at the final mixture temperature and the 
partial pressure of the component in the mixture 












 

2

1
12

T

Q
SS

0, adiabatic 

),(),(
22222222 ,1,11 OOOONNNN pTsnpTsnS 

),(),( 22222 222222
pyTsnpyTsnS OOONNN 



• entropy produced 
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EXAMPLE 5 

• Adiabatic Mixing of Two Streams 

• At steady state, 100 m3/min of dry air at 32oC and 1 
bar is mixed adiabatically with a stream of oxygen (O2) 
at 127oC and 1 bar to form a mixed stream at 47oC 
and 1 bar. Kinetic and potential energy effects can be 
ignored. Determine  

– (a)the mass flow rates of the dry air and oxygen, in kg/min, 

– (b)the mole fractions of the dry air and oxygen in the 
exiting mixture, and  

– (c)the time rate of entropy production, in kJ/K min 



Assume  

• 1. steady state. 

• 2.No heat transfer occurs with the surroundings. 

• 3.Kinetic and potential energy effects can be ignored, 

• 4.The entering gases can be regarded as ideal gases. 
The exiting mixture can be regarded as an ideal gas 
mixture. 

• 5.The dry air is treated as a pure component. 



• Solution 

•  the specific volume of the air at 1 is 

 

 

 

• The mass flow rate of the dry air entering is 

 

 

• From mass balances,  
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• The enthalpy of the mixture at the exit is evaluated 
by summing the contributions of the air and oxygen, 
each at the mixture temperature. 

 

 

 

• (b) the mole fractions of the dry air and oxygen in 
the exiting mixture 
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• (c) The specific entropy of each component in the 
exiting ideal gas mixture is evaluated at its partial 
pressure in the mixture and at the mixture 
temperature 

 

 

• Since p1 = p3, the specific entropy change of the dry 
air is 

 

•  since p2 = p3, the specific entropy change of the 
oxygen is 
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• The rate of entropy production becomes 
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PSYCHROMETRIC APPLICATIONS 



Psychrometrics 

• Psychrometrics is the determination of physical and 
thermodynamic properties of gas-vapor mixtures, 
study of systems involving mixtures of dry air and 
water vapor. A condensed water phase also may be 
present.  

• Such systems is essential for the analysis and design 
of air-conditioning devices, cooling towers, and 
industrial processes requiring close control of the 
vapor content in air. 



Moist Air 

• The term moist air refers to a mixture of dry air and 
water vapor in which the dry air is treated as if it 
were a pure component. 

• As can be verified by reference to appropriate 
property data, the overall mixture and each mixture 
component behave as ideal gases at the states under 
present consideration.  

• Accordingly, for the applications to be considered, 
the ideal gas mixture concepts introduced previously 
apply directly. 



Humidity Ratio, Relative Humidity, and  
Mixture Enthalpy 

• Humidity ratio  

 

 

 

• Relative humidity 

 

 

• Mixture Enthalpy 
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• partial condensation of the water vapor can occur 
when the temperature is reduced. Water vapor 
would cool at constant pv from state 1 to state d, 
called the dew point. 

• the system would be cooled below the dew point 
temperature, some of the water vapor would 
condense. The vapor that remains can be regarded 
as saturated at the final temperature, state 2. 

 

 



Example 1 

• Cooling Moist Air at Constant Pressure 

• A 1 kg sample of moist air initially at 21oC, 1 bar, and 
70% relative humidity is cooled to 5oC while keeping 
the pressure constant. Determine  

• (a)the initial humidity ratio,  

• (b)the dew point temperature, in oC, and  

• (c)the amount of water vapor that condenses, in kg. 



• (a) The partial pressure of the water vapor, pv1 can be 
found from the given relative humidity and pg from 
Table at 21oC, 1 bar.  
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• (b) The dew point temperature is the saturation 
temperature corresponding to the partial pressure, 
pv1. Interpolation in Table  gives T=15.3oC.  

• (c) The amount of condensate, mw, equals the 
difference between the initial amount of water vapor 
in the sample, mv1, and the final amount of water 
vapor, mv2 , 
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• the partial pressure of the water vapor remaining in 
the system at the final state is the saturation 
pressure corresponding to 5oC: pg=0.00872 bar 

 

 

 

• The total condensate 
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Example 2 

• Cooling Moist Air at Constant Volume 

• An air–water vapor mixture is contained in a rigid, closed 
vessel with a volume of 35 m3 at 1.5 bar, 120oC, and  = 
10%. The mixture is cooled at constant volume until its 
temperature is reduced to 22oC. Determine  

• (a)the dew point temperature corresponding to the 
initial state, in oC, 

• (b)the temperature at which condensation actually 
begins, in oC, and  

• (c)the amount of water condensed, in kg. 



• The dew point temperature at the initial state is the 
saturation temperature corresponding to the partial 
pressure pv1. 

• Interpolating, gives the dew point temperature as 
60oC, which is the temperature condensation would 
begin if the moist air were cooled at constant 
pressure. 

 

   bar  1985.0985.110.0111  gv pp 



• (b) In the process from state 1 to state 1’, the water 
exists as a vapor only. For the process from state 1’ 
to state 2, the water exists as a two-phase liquid–
vapor mixture. Note that pressure does not remain 
constant during the cooling process from state 1 to 
state 2.  

• State 1’on the T–v diagram denotes the state where 
the water vapor first becomes saturated. The 
saturation temperature at this state is denoted as T’.  

• Cooling to a temperature less than T’ would result in 
condensation of some of the water vapor present. 
Since state 1’is a saturated vapor state, the 
temperature T’ can be found by interpolating.  



•  The specific volume of the vapor at state 1’equals 
the specific volume of the vapor at state 1, which can 
be evaluated from the ideal gas equation 

 

 

• Interpolation with vv1 = vg  gives T = 56oC.  

• (c) The amount of condensate equals the difference 
between the initial and final amounts of water vapor 
present. The mass of the water vapor present initially 
is  
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• At the final state, the water forms a two-phase liquid–
vapor mixture having a specific volume of 9.145 m3/kg. 

• the quality x2 of the liquid–vapor mixture can is 

 

 

• where vf2 and vg2 are the saturated liquid and saturated 
vapor specific volumes at T2=22oC, respectively. 

• the mass of the water vapor contained in the system at 
the final state is 

 

• The mass of the condensate,mw2, is then 
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Example 3 

• Evaluating Heat Transfer for Moist Air Cooling at 
Constant Volume 

• An air–water vapor mixture is contained in a rigid, 
closed vessel with a volume of 35 m3 at 1.5 bar, 
120oC, and  = 10%. The mixture is cooled until its 
temperature is reduced to 22oC. Determine the heat 
transfer during the process, in kJ. 



• Solution 

• closed system energy balance 

 

• where 

 

 

• The specific internal energy of the water vapor at the 
initial state can be approximated as the saturated 
vapor value at T1. At the final state, the water vapor 
is assumed to exist as a saturated vapor, so its 
specific internal energy is ug at T2. The liquid water at 
the final state is saturated, so its specific internal 
energy is uf at T2. 

12 UUQ

WQU



D

22222222222

1111111

fwgvaawwvvaa

gvaavvaa

umumumumumumU

umumumumU







• Therefore, 

 

• The mass of dry air, ma, can be found using the ideal 
gas equation with the partial pressure of the dry air 
at the initial state obtained using pv1=0.1985 bar. 

 

 

• Q = -10,603 kJ 
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Modeling an Adiabatic Saturation 
Process 



• The device is assumed to operate at steady state and 
adiabatic.  

• An air–water vapor mixture of unknown humidity ratio enters 
the device at a known pressure p and temperature T.  

• As the mixture passes through the device, it comes into 
contact with a pool of water. If the entering mixture is not 
saturated ( < 100%), some of the water would evaporate.  

• The energy required to evaporate the water would come from 
the moist air, so the mixture temperature would decrease as 
the air passes through the duct.  

• For a sufficiently long duct, the mixture would be saturated as 
it exits ( = 100%).  

• The temperature of the exiting mixture is the adiabatic-
saturation temperature. 



• A steady flow of makeup water at temperature Tas is 
added at the same rate at which water is evaporated. 

 

 

 

• Dividing by the mass flow rate of the dry air, the 
energy rate balance can be written on the basis of a 
unit mass of dry air passing through the device as, 

 

 

 

• where 
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• therefore 
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• Applying Mass and Energy Balances to Air-
Conditioning Systems 

 

 

 

 

 

• Mass balance 

 

• Or 

• where 
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• energy balance, 

 

• with 

 

• Substitute mass balance  

 

• into, we have, 

 

 

 

• where 
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Ideal gas mixture Using steam table 



• Evaluating the enthalpies of the water vapor as the 
saturated vapor values at the respective 
temperatures and the enthalpy of each liquid stream 
as the saturated liquid enthalpy at the respective 
temperature. 



Example 1 

• Heating Moist Air in a Duct 

• Moist air enters a duct at 10oC, 80% relative humidity, 
and a volumetric flow rate of 150 m3/min. The mixture is 
heated as it flows through the duct and exits at 30oC. No 
moisture is added or removed, and the mixture pressure 
remains approximately constant at 1 bar.  For steady-
state operation, determine  

• (a)the rate of heat transfer, in kJ/min, and  

• (b) the relative humidity at the exit. Changes in kinetic 
and potential energy can be ignored. 



• (a) Mass balance 

 

 

• Energy balance 
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• Solving for Q 
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Example 2 

• Adiabatic Mixing of Moist Streams 

• A stream consisting of 142 m3/min of moist air at a 
temperature of 5oC and a humidity ratio of 0.002 
kg(vapor)/kg(dry air) is mixed adiabatically with a second 
stream consisting of 425 m3/min of moist air at 24oC and 
50% relative humidity. The pressure is constant 
throughout at 1 bar. Using the psychrometric chart, 
determine  

• (a)the humidity ratio and  

• (b)the temperature of the exiting mixed stream, in oC. 



• Solution 

• (a) The humidity ratio 3 can be found by means of 
mass rate balances for the dry air and water vapor, 
respectively 
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• Let 

• Then 

 

 

• Since  

 

 

• Then 

 

• The values of va1, and va2, and 2 are readily found 
from the psychrometric chart.  
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• Thus, at 1 = 0.002 and T1 = 5oC, va1 = 0.79 m3/kg(dry 
air). At 2 = 50% and T2 = 24oC, va2 = 0.855 m3/kg(dry 
air) and 2 = 0.0094. 

• The mass flow rates of the dry air are then           
kg(dry air)/min and                  kg(dry air)/min, 

 

 

• (b) The temperature T3 of the exiting mixed stream 
can be found from an energy rate balance.  

 

• From the table,  
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• Therefore 

 

 

 

 

• Using this value for the enthalpy of the moist air at 
the exit, together with the previously determined 
value for 3, fixes the state of the exiting moist air. 
From inspection of table, T3 = 19oC.  
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Cooling Towers 

• Forced-convection, 
counterflow 
cooling tower 



Example  

• Determine the mass flow rates of the dry air and the 
makeup water, in kg/h. 



• Mass balance 

 

 

• Let 

 

• Energy balance 

 

• Evaluating the enthalpies of the water vapor as the 
saturated vapor values at the respective 
temperatures and the enthalpy of each liquid stream 
as the saturated liquid enthalpy at the respective 
temperature,  
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•  the energy rate equation becomes, 

 

• Let              ,                                         , 

 

• Then 

 

• The humidity ratios 3 and 4 can be determined 
using the partial pressure of the water vapor 
obtained with the respective relative humidity          
3 = 0.00688 and 4 = 0.0327, 

• Therefore,  
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