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* Phase equilibria
— VLE, VLLE

— Thermodynamic models
* y—¢ (Activity coefficient models)
* ¢—¢ (Equations of state)
* At phase equilibria:
—Tl=T=T=__. =T
—pl=pl=pli=..=p

= fiH (T pox") = i (T, p, xi') = 11 (T, p, ") = .. for i = 1,
2,..,C



Criteria for systems at VLE:

- fIV = fIL for | = 1, 2,..., C

— One-model method:

\

f, :¢ivyip: f. :¢iLXip

Both the vapor phase and liquid phase fugacities are
calculated from an equation of state.

Two-model method:

\ \ L oL

foo=lg. y,pj= i =Xt

Vapor phase fugacity is calculated from an equation of state
and liquid phase fugacity from an activity coefficient model.



The Partial Molar Gibbs Free Energy and
Fugacity—Reuvisit

* Recall dG = —SAT +Vdp + Y GidN
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* So g{%] and V‘{i}] & Why?

* Therefore Einl,pz,y—e_mn,pl,y:j“[aj—‘] o - [V
P p T,N "

for isothermal change at T=T,;



The Partial Molar Gibbs Free Energy and
Fugacity—Reuvisit

* Define the fugacity of species I in a mixture

. (G (T p.x)=Gi (T, p.x)] —
T pax) = p e § SR & = R7In g
[ < J - -
[C?iT, , —G_:G T,p, 1 1 po— —iG
I (T.p,x) ( px)}ZXipeXp 4[—J. (Vi—vi )dpw}
{ RT | | RT 0 J

e sothatasr—>0o - xp=1p
* The fugacity coefficient for a component in a

mixture ) e




The Partial Molar Gibbs Free Energy and

Fugacity—Reuvisit

iJ it =T.@ + 77 1n 7]
T,N

A G _ o f oG
o [ami) (ee) & RT[ ] _[ _} v
op ) Lap ) o ). Lop ),

for pure component

To relate the fugacity of pure component i to the fugacity of component |
in a mixture

. %[j: [a ;np ‘ j o [a 1;P r ldp }}

, . ) [ Fr,p,x)] [ r(1, p))
=}FT{.[dlnfl_—J'dlnfl}zﬁf{ln - —\ — RT {In —
° ‘ £A(T,0, x) | £.(7,0) |
L j £ :
= J.p(V_j - V_1,>dp pi p

p —> 0, fi—> p, = px, and f,—> p
[ fA,(T,p,X)] I
thus RT {In —————} = | (V po- V_J,)dp

| Xl.fl.(T,p)J



The Partial Molar Gibbs Free Energy and

Fugacity—Reuvisit

* Therefore, for a mixture in which v - same as earlier,

L] fi = f.x

* Therefore,

true for ideal gas mixtures and ideal solutions.

. fi ((?i(T,p,x)—G_:G(T,p,X)W
¢, = —— = exp {
X p [ RT |
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Phase equilibrium criteria in terms of fugacity

* Let

e with

e Recall

AGi=Gi(T,p

)G (T, p.x')

X
G (T, p,x) =G " (T,p,x)+RT Ing(T,p,x)
where superscripts | and |l denotes phases of different composition

— IG

Gi (T,P,x)=G_, (T,P)+RT Inx

—IG

G (T.P.x")=G(T.p.x')=G: (T.p,x')+RT Ing'(T,

—IG

G (T.p,x )=RT Ing" (T

pure

then,

p,L')

I
P X )

& = T Ing

=G (T,p)+RT Inx'+RT Ing' (T, p.x")

pure

G (T, p)=RT Inx" —RT mg" (T, p.x")

—RT Inx'¢ —RT Inx'g'

9,

at equilibrium

AG. =G .(T,P,x")-G.(T,P,x)=0 mmm)

~ f/px | P -RT m(f'/P)-RT n(f"/P)=RT In f'~RT In {'




Fugacity and fugacity coefficient for a species in
a mixture from an equation of state

° ~ f 1 p(— —IG
Recall g = —— = exp L——[ @i—vi %pl
X P | RT 0 J

X.p RT -0

* Therefore, |n¢§.=|n[ f,] 1

* normally volumetric equation of state are pressure explicit.
The integral is easier if the integration is based on volume.
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Vi =V, = ——
P
— pure =1
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Excess Gibbs Free Energy and
Gibbs-Duhem Equation

ex

Ife (T.P.x)=axx, thene, = ax) = &7 Iny, 6, = ax’ = k7 1n 5,

e

zxidgjx =x1dafx+x2dg:=xld(ax22)+ xzd(axf)

1

C
T.,P
i=

= 2axlx2(dx2 + dxl): 2ax x,d(x +x,)=0

oy, oy, a [o@1-x)" 1 a [o@1-x,) |
X, + X, = X, + X,
0 X 0 X RT L 0 X J RT L 0 X J
T,P 1 T,P 1 T.,P 1 TP
2ax1 a Faxﬂ 2axlx2 2axlx2
S L-x)+Xx,—|—|=- + =0
RT RT Laxlj RT RT

All activity coefficients derived from an excess Gibbs free energy expression

that satisfies boundary conditions of being zero at x,=0 and 1 will satisfy the
Gibbs-Duhem equation.

atx,=0andx,=1 G~ =0 then the activity coefficients satisfy o0 = z x,d In y,



Activity Coefficient Model

ex

Iny. =G /RT CieX/RT:inlnyi
 Random mixing assumption (Wohl’s
expansion):
G ex

— :ZZaijzizj+ZZZaijkzizjzk+ .....
i j [ j k

RT Z q, X,

— Redlich-Kister model
— Margules model
— van Laar model



Margules’ Equations

*While the simplest Redlich/Kister-type correlation
Is the Symmetric Equation, but a more accurate
equation is the Margules correlation:

E

G

- A21X1 + A12 X,

RTx X
12
let,
G G-
In . =i = A
I!To RTX | X, RTx X, L .
A =1Iny’~
12 1
*so that



Margules’ Equations

If you have Margules parameters, the activity
coefficients can be derived from the excess Gibbs
energy expression: o

= A21 Xl + A12 X2
RTX X,
*to yield:

2
Iny, = x,[A, +2(A, = A, )x]

2
Iny, = X [A, +2(A, = A,)X,]

*These empirical equations are widely used to
describe binary solutions. A knowledge of A, and A,,
at the given T is all we require to calculate activity
coefficients for a given solution composition.



Van Laar Correlation

Another two-parameter excess Gibbs energy model
was developed from an expansion of (RTx;x,)/G*

instead of GE/RTx,x,. The end results are:
G " A A

12 21

RTx X, A12x1+ Ale2

*for the excess Gibbs energy and:

. -2 . -2
. A, X . A X
InyZ:A21[1+ = 2} |ny1=A12{1+ = 1}

A X A_ X

12 "1 21 2

for the activity coefficients.
*as x,—0, Iny,>—> A"}, asx,—0,Iny,” > A,



Local Composition Models

*Unfortunately, the previous approach cannot be extended
to systems of 3 or more components. For these cases, local
composition models are used to represent multi-component

systems.

— Wilson’s Theory
— Non-Random-Two-Liquid Theory (NRTL)
— Universal Quasichemical Theory (Uniquac)

*While more complex, these models have two advantages:

— the model parameters are temperature dependent

— the activity coefficients of species in multi-component liquids

can be calculated using information from binary data.

A,B,C

tertiary
L T~

—

A,B
binary

/\/\

A,C
binary

/\/\

B,C
binary

/\/\




Local Composition Models

Introductory Chemical Engineering Thermodynamics
J.Richard Elliott, Carl T. Lira

Composition around a “1” molecule Composition around a “2” molecule
X,; — mole fraction of “2’s” around “1” X1, — mole fraction of “1’s” around “2”
X1, — mole fraction of “1’s” around “1” X,, — mole fraction of “2’s” around “2”
local mole balance, x;; + x5, =1 local mole balance, x,, + x;, =1

Assume that the local compositions are given by some weighting factor, Q;,
relative to the overall compositions.

Xor %2 X120 XN
)| N
X1 % X X2

Therefore, if Q,, = Q,, = 1, the solution is random.
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Local Composition Models

The local mole balance:

Writing the local mole fractions x,, and X, in terms of the overall mole
fractions, x; and X,
ng
X = Xq1—
21 11x1 21

Substitute back to (1),

X2

*1

Rearrange, Xy
11 =

X1 +x,825

Substitute back to (2), O
25921

X1+ X825,



Local Composition Models

Similar for type "2”

%)
x =
22
x1£212+x2
X192,
t2 T X5+ X
1°%12 2

Apply this local composition theory to properties using two-fluid theory,

1 o (2
sy

(M-M®) = x,(M-M*)
The local composition environment of the type 1 molecules determines the first
term, local composition environment of the type 2 molecules determines the
second term.



Local Composition Models

Introduce the local interaction energy (g;), allowing that the €, = €,,

Neglecting the excess volume of mixing relative to the other contributions,
which should be quite acceptable for liquids.

g (1) Ny
¢.(2) Ny

then

. NA
U - Ulg = 7[X1NC1(.X11811 + ‘x21821) + X2NC2(X12812 + x22822)]

Should using H as we discussed in regular solution. Since excess volume
of mixing is neglected, U = H.



Local Composition Models

Recall,

Notice that when x,; approaches unity, X, goes to zero, and X,, goes to zero,
and x,, goes to one,

(U = U®)pure1 = (N4I2)Ne 24,

(U = U®) ez = (NAI2DNese )

where ch is the coordination number, the total number of atoms in the
neighborhood of the jth species). We have,

(U-U)" = 2 (U=U"), 01 + 5, (U= U9 —&‘[ Ne &1y + x,NCo o]
~ = HlU - purel T XolU — pure2 = = XINC €1 T XpINCoE9y



Local Composition Models

Recall,
U—Uig—&[ch(x E11 + X91E01) + Xy NCH(X1HE17 + XrrE )]
= 5 Mvarén X21€21 XpINCH(X12€10 + Xpp€9p

Subtracting we have,
' A

using (xp—Dejp=-x1811  (xp-1Degy = —xppep

N
Arrivingat U® = TA[X1X21NC1(321 — &11) + XX Ney (€15 = €2))]

Replace x,,, and Xy,

UE = NA[X1X2QZINCI(821 _811)+x2x1912NC2(812_822)J
2 X1+ X825, X1, +x,




Wilson’s Equations for Binary
Solution Activity

Recall,

A=U-TS = A/RT = U/RT - S/R
then,
7 9(A/RT)) =l<&> _&_Z<ﬂ_5> & U 16 U
\ Jr ), RT\or)y, Rr* R\9r/y R RT RT RT
We have,

T AE E E E

T
f d(—) — A__14_ — _f U_2dT
. \RT) ~ RT RT|_ o RT

where A:A (RT) - 1s the infinite temperature limit at the given liquid density
independent of temperature but possibly dependent on composition or density.



Wilson’s Equations for Binary
Solution Activity

Wilson made a bold assumption regarding the temperature dependence of Q.

Q.= A.. = K"exp(NANCJ(EU_gjj)) = K"e><]€)<_iﬁ)
g J! Vi 2RT v RT

Substitute back and integrate,

E

E
A A
v —xIn(®, + ®,exp(-A,/RT)) —x,In(P exp(-A,;/RT) + D,) +

0]

Separate G*/RT Into an energetic part known as the residual contribution, that
vanishes at infinite temperature or when €, — €,, =0 and €,; — €, =0, and a
size/shape part known as the combinatorial contribution, that represents the
Infinite temperature limit at the liquid density.



Wilson’s Equations for Binary
Solution Activity

Therefore,

(GE/RTRES = —x|In(®, + Drexp(-A,,/RT)) — x,In(P exp(=A,,/RT) + D)
For the combinatorial contribution, Wilson used Flory’s equation,
G"/(RT)|_= (GE/RT)OMB = xIn(®/x;) + x,In(Py/x,)
Combine, the above, Wilson’s equation becomes,

—(—;f = —x11n<(I)1 + ®2exp<i12>> —x21n<q)lexp<:4—2> + CI)2) +x11n?l +x21n?2
RT RT RT X X

E




Wilson’s Equations for Binary
Solution Activity

A versatile and reasonably accurate model of excess Gibbs
Energy was developed by Wilson in 1964. For a binary system,
GE is provided by:

= x, In( x, + x,A )= x,In( x, + x,A )

<
)
-
|
QD
—1

12 A = V—leXp [ - a21—|
RT | Y | RT |

2

V. is the molar volume at T of the pure component i.
a; is determined from experimental data.
The notation varies greatly between publications. This includes,

— ay, = (A, - Ayy), 3,1 = (A, - A,,) that you will encounter in Holmes,
M.J. and M.V. Winkle (1970) Ind. Eng. Chem. 62, 21-21.



Wilson’s Equations for Binary
Solution Activity

*Recall SRR

RT Iny. =G =

on.
! T,P,n

*When applied to Wilson’s :

Iny = —1In( X. + X_A X A A
Vi =~ ( X, 12)+ 2 B
X, + X2A12 X, + XlA 21

A A
In 7, = - In( x2+x1A21)x{ = - = J

Xp+ X, A, X, + X Ay



Wilson’s Equations for Multi-
Component Mixtures

*The strength of Wilson’s approach resides in its ability to describe multi-
component (3+) mixtures using binary data.

— Experimental data of the mixture of interest (ie. acetone, ethanol, benzene)
is not required

— We only need data (or parameters) for acetone-ethanol, acetone-benzene
and ethanol-benzene mixtures

*The excess Gibbs energy for multicomponent mixtures is written:

E

G

= z X, In( Z XA y)

RT )
*and the activity coefficients become:
X, A

Ny =1-lY x A, -% X
i C 2 XAy
j

where Aij = 1 for i=j. Summations are over all species.



Wilson’s Equations for
3-Component Mixtures

*For three component systems, activity coefficients can be

calculated from the following relationship:
XlA 1i

Iny. =1-In( x, A+ X,A , + XA )~
Xl + X2/\12 + X3A 13

XZA 2i

XA+ X, + XA,

X_.A

3 3i

xlA s T sz32 + X,

*Model coefficients are defined as (A;; = 1 for i=j):




Non-Random-Two-Liquid Theory
(NRTL)

* NRTL model (Non-Random Two-Liquid; Renon and Prausnitz,
1968)

— For binary systems:

L\ RT )
— @4, , the so-called non-randomness parameter

— Good for both miscible and partially miscible systems

\ RT

[ ? 1
[ _ 2| G21 z-12(312 |
ny X, 17, +
L X1+X2G21 (X + XlGlz) J
[ 2 ]
Iny, =x’| { Cu J + "nCn |
Vo, = X 17y

L X + XlGlZ (X + X2G21) J

|_ 9, 9y, )—| |_ (921_911)-|

- J; G, =exp L_alz )J



Non-Random-Two-Liquid Theory
(NRTL)

For aliquid, in which the local distribution is random around
the center molecule, the parameter a,, = 0. In that case the
equations reduce to the one-parameter Margules activity model

+712]= AX2

| = x|
nyl_xzf 2

21

In y, = Xlz[r + T21]= AX 12

The NRTL parameters are fitted to activity coefficients that have
been derived from experimentally determined phase
equilibrium data

Noteworthy is that for the same liquid mixture there might exist
several NRTL parameter sets. It depends from the kind of phase
equilibrium (i.e. solid-liquid, liquid-liquid, vapor-liquid).



Universal Quasichemical Theory

 UNIQUAC (Abrams and Prausnitz, 1975)

* Inthe UNIQUAC model the activity coefficients of the it
component of a two component mixture are described by a
combinatorial and a residual contribution

c R
Iny. =1Iny +1Iny

* The first is an entropic term quantifying the deviation from
ideal solubility as a result of differences in molecule shape.
The latter is an enthalpic correction caused by the change in
interacting forces between different molecules upon mixing.



UNIQUAC

e Combinatorial contribution

c z V. '
Iny =1-V.+InV. + —q.|1-—+In —
2 F F.

— V,, is the Volume fraction per mixture mole fraction for the it
component

— F,, is the surface area fraction per mixture molar fraction for
the it component
— 2=10
* The excess entropy y¢ is calculated exclusively from
the pure chemical parameters, using the relative Van
der Waals volumes r; and surface areas q; of the pure
chemicals.



UNIQUAC

e Residual contribution
( 2. 4%y W
|
|

R j 9;%7
Iny. =9q./1-1In

-
| 2 95X, P2 4Ty
j ‘ )

\

fAuij | RT
T. = €
]

Au; [J/mol] is the binary interaction energy parameter.

interaction energy between molecules i and j.
* Data is derived from experimental activity

coefficients, or from phase diagrams



The UNIFAC model

A. Fredenslund, R.L. Jones, and J.M. Prausnitz, AIChE Journal (Vol.21, No.6 1975)

In = In y° (combinator  ial )+ In y " (residual ) —
In ¥ (combinator  ial )= In d + ’ g In ‘ + 1 d > x| Same as
I = T4, o . i
X, 2 ¢i X . UNIQUAC
. | | Model
with |l =(r-q)z/2-(r -1) In y (residual  )=3xv '[InT, —-InT "]~
y " is the number of k groups present in species i

k

) 1S theresidual contribution to the activity coefficient of group kin a pure
Fe fluid of species I.

I o w | surface area
- X
In Fk:Qk|1—In(z®m‘Pmk)—zm—kn‘| @ = fraction of _ Q.
L m mZ@n‘PHmJ group m > X Q.
[-(u_ —u_ )] [-a | : :
¥ = exp L = " J = exp L s J x - mole fraction of group min
kT T mixture



74
L, = (_é_) (rg —qg) — (r2— 1)
For component 2, v, can be found by interchanging sub-
scripts 1 and 2.

Numerical results for In y are insensitive to the choice
of coordination number z provided a reasonable value
(6 = z = 12) is chosen. However, adjustable parameters
721 and 7,5 depend on that choice. In this work we have
consistently used z = 10.

— a

(-, e )T T
IR

D.S. Abrams and J.M. Prausnitz, AIChE J. Vol. 21:116-128, 1975



Example: obtain activity coefficients for the acetone/n-pentane system

at 307 K and x

~
~
N
N
\
\
\
\
1 e
l/

acetone

ch—c-*-CH 3 )

=0.047.

Group identification

Molecules (i)| name |Main No.| Sec. No v R, Q
Acetone (1) CH, 1 1 1 0.9011 0.848
CH,CO 9 19 1 1.6724 | 1.488
n-pentane CH, 1 1 2 0.9011 | 0.848
CH, 1 2 3 0.6744 | 0.540




o AR s e ' ' e R mms s R e

Examples of molecules and their

Main group Subgroup k Ry Or constituent groups
14CH,"™ CH; 1 @901D @848 n-Butane: 2CHs3,2CH;
CHz 2 @.674D @540 D Isobutane: 3CH4, ICH
CH 3 04469 0228 22-Dimethyl
C 4 02195 0.000 propane: 4CH;, 1C
3"ACH ACH 10 05313 0400 Benzene: 6ACH
(AC = aromatic carbon)
4 "ACCH;"  ACCH; 12 12663 0968 Toluene: S5ACH, 1ACCH3
ACCH: 13 10396 0.660 Ethylbenzene: ICH3,5ACH, 1ACCH»
S"0OH OH 15 10000 1200 Ethanol: 1CH3, 1CH3, 10H
THH, 0™ HoOr 17 09200 1400 Water 1H;0
9"CH,;CO" CHiCO 19 @ @ Acetone: ICH1CO, 1CH;
CH,CO 20 7 1 3-Pentanone: 2CHs, 1CH2CO, 1CHy.
13"CH;0" CH;0 25 1.1450 1.088 Dimethyl ether: 1CH3, 1CH;0
CH;0O 26 09183 0.780 Diethyl ether: 2CHj3, 1CHz, ICH; 0
CH—O» 27 0.6908 0468 Dusopropylether:  4CHs, ICH,1CH-O
15 "CNH" CH;NH 32 14337 1244 Dimethylamine: 1CH;, 1CH;NH
CH;NH 33 12070 0936 Diethylanune: 2CH;, 1CH,, ICH:NH
CHNH 34 09795 0624 Dusopropylamine: 4CH., 1CH, ICHNH
19 "CCN" CH3CN 41 18701 1.724  Acetomtrle: 1CH:CN
CH;CN 42 16434 1416 Propionitrle: [CHs, ICH;CN

-i'“ I::F' H‘.‘-II'I-E#H D n!‘-l-l:‘f'l'!TI\'.'\'.'ﬂH ﬂﬂ rrnrl.-:l-n:.-'|11nr'| h." if‘lii‘l]#f [rp— | I Fﬂﬂﬂl\11ﬁd’!’ m{_‘ i i Jppa—— 1.'111 1“



In y = In y (combinator  ial )+ In y (residual )

_ Z o _
In » (combinator jal )= In ¢—'+—In —'+Ii—¢—'z x 1 |l =(r—q)z/2-(r -1)
X 2 ¢ X

calculation of combinatorial contribution

mole fraction of acetone: x , = 0.047

segment volume for acetone: r,=1x0.9011 +1x1.6724 = 2.5735
segment volume for pentane: rr=2x0.9011 + 3x 0.6744 = 3.8254
total volume at Xp= 0.047: r. =0.047 x2.5735 + 0.933 x 3.8254 = 3.7666

: 0.047 x 2.5735
the segment fraction for acetone: ¢, = I~ = 0.0321

the segment fraction for pentane: g, =1—¢ = 0.9679

A\ Residual error



area for acetone: q, =1x0.848 +1x1.488 = 2.336

area for pentane: q, =2x0.848 + 3x0.540 = 3.316
total area at XA:0_047; q, = 0.047 x 2.336 + 0.953 x 3.316 = 3.2699
area fraction for acetone: 0 = 0.047 < 2.3% _ 0 0336
3.2699
area fraction for pentane: 0. =1-6_ = 0.9664
Z 10
| =—(r, -q,)-(r, -1) = —(2.5735 - 2.336 )- (2.5735 -1) = —0.3860
2 2
10
| = —(3.8254 -3.316 )- (3.8254 -1)= -0.2784
2
Mol le (i : : ] .
olecule (i) | of ¢ 6 ]

acetone 2.5735 2.336 0.0321 0.0336 -0.3860

pentane 3.8254 3.316 0.9679 0.9664 -0.2784




combinatorial contribution

_ _ ¢ z 0 o
In y (combinator  ial )=1In —+ —q,In —+1 - —3% x|
x 2 9 X
0.0321 10 0.0336
for acetone ny =1n +—x2.336 xIn ————— 0.386
0.047 2 0.0321
0.0321
~ ——[0.047 x(-0.38 )+ 0.953 x (- 0.2784 )] = —0.0403
0.047
0.9679 10 0.9664
forpentane |5, - + —x3.316 xIn ————0.2784
0.953 2 0.9679
0.9679

~ ——[0.047 x(-0.38 )+ 0.953 x (- 0.2784 )] = —0.0007
0.953



residual contribution

In y (residual )=3xv [Inr, -InT "]

K

v @ is the number of k groups present in species i

k

r!” Is the residual contribution to the activity coefficient of group k in a pure fluid of
species I.
I o w | surface area
nr =Qli-m(xe ¥ )y —o—=_| o =< fraction of _ 2.2
] " "ZOY. group m ¥ X Q,
v~ e [ (u, —u_)] = e [-a_ ] X = mple fraction of group min
" | KT | T mixture
e main group labels



Table H.2 UNIFAC-VLE Interaction Parameters, a,,, in kelvins'

76.5(_)..,...,. -

1 3 4
CH, 0.00 61.13

ACH  —1LI12 0.00  167.00
ACCH, 6970 —146.80 0.00
OH 156.40 89.60 25.82
H,0 30000 36230  377.60
CH,CO 2676  140.10  365.80
CH,0 83.36 52.13 65.69
CNH 6533 —2231  223.00
CCN 2482  -2297 —13840

5

986.50
636.10
803.20
0.00
-229.10
164.50
237.70
-150.00
185.40

7 9 13 15 19
1,318.00 476.40 251.50 255.70 597.(
903.80 25.77 32.14 122.80 212.5C
5,695.00 —52.10 213.10 —49.26 6,096.0(
353.50 8400 28.06 42.70 6.71
0.00 —=19540 540.50 168.00 [12.6(
472.50 000 —103.60 —174.20 481.7¢
—314.70 191.10 0.00 251,50 —18.5]
—448.20 39460  —56.08 (.00 147.1(
242.80 —287.50 3881 —108.50 0.0C

. K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, IEC Research, vol. 30, pp. 2352-2355,199



— \u —u —a
from table H.2 ¢ e T m TUITTmaL
I R
[~ 476 .4
a, . =a_ .o =46 4= Y =exp = 0.2119
| | | L 307 J
[~ 26.76 7
a,, =8, . oo - 26.760 = ¥ =exp | —— = 0.9165
| | | e
all:a9,9:0:> ‘Pll:\Pg.9:1
Calculation of ~ r® Q, from table H.1
we are dealing a pure substance! x , = mole fraction of group m in
mixture
(i) r @ mLIjkm —I
nr”-=qQli-mze v |-y —=—=| surface area
L " " z @ n‘P nm J @ — fraction Of — X mQ m
group m > X Q

for pure acetone, there are only two different kinds of groups: CH; and
CH;0. Let CH, be labeled by 1 and CH;0O be labeled by 19.



(A) Vl
X1 = A . = = 05, X19 - 05
Vl() V1(9) 1+l
(A) 0.5x 0.848 (A)
0" - -0.363, ©. =0.637
0.5x1.488 + 0.5 x 0.848
I 1
I (i) ®m\Pkm
nT"=Q li-m(zxe v |- |
L " ; Z®H\IIHITIJ
®(A)IP G)(A)‘{—’
In T =0.848 [1-In(0.363 x1+ 0.637 x 0.9165 )] 0, Y.,
o "y |
L 110,363 x 1 0.637 x 0.2119
_|_

+ 0.848 [—{

(A)

®1 lPl,

1

0.363 x1+ 0.637 x 0.9165

(A)

O 4
19 9

1

InT." =1.488 [1- In(0.363 x 0.2119 + 0.637 )]

+ 1.488 [{

0.363 x 0.9165

0.363 x 0.2119 + 0.637 x1

j} = 0.409

® 1

(A)

Y

1

9

)

(A)
19

Y

9

9

0.637 x 0.2119

0.363 x1+ 0.637 x 0.9165

+

0.363 x 0.2119 + 0.637

}} = 0.139



for pure pentane, there are two kinds of subgroups, CH; and CH, and both

subgroups belong to one main group. Let CH, be labeled by 2

)
2

2
5

1 (P) (P)

1 1

Since both subgroups are belong to the same main group

(P) (P)
In r- = In r.—= 0

Calculation of group residual activity at x, = 0.047

now we are dealing a mixture!

for CH;(labeled 1) for CH,(labeled 2)
0.047 x1+ 0.953 x 2 0.953 x 3
X = =0.4019 , X, =
0.047 x 2+ 0.953 x5 0.047 x 2+ 0.953 x5

0.4019 x 0.848
o - = 0.5064

" 0.4019 x 0.848 + 0.5884 x 0.540 + 0.0097 x 1.488

for CH;CO
(labeled 19)

- 0.5884 , X _ = 0.0097

47



0.5884 x 0.540
®, = = 0.4721
0.4019 x 0.848 + 0.5884 x 0.540 + 0.0097 x 1.488

0.0097 x 1.488
0, = = 0.0214
04019 x 0848 + 05884 x 0540 + 0.0097 x 1.488

i © vy |
Ian:(QJl—In&j@me)—zj——L—m—|
L m mZ@n\IlnmJ

In T, = 0.848 [1 - In(0.5064 + 0.4721 + 0.0214 x 0.9165 )]

| 0.5064 + 0.4721 0.0214 x 0.2119 |
— 0.848 L +

0.5064 + 0.4721 + 0.0214 x 0.9165 (0.5064 + 0.4721 )x 0.2119 + 0.0214 J

=145 x10

In T = 0.540 [1-1In(0.5064 + 0.4721 + 0.0214 x 0.9165 )]

0.5064 + 0.4721 0.0214 x 0.2119 ]

— 0.540 +
LO.5064 + 0.4721 + 0.0214 x 0.9165

(0.5064 + 0.4721 )x 0.2119 + 0.0214 J

4

=90.26 x10



In ' =1.488 [1-In(0.5064 + 0.4721 + 0.0214 x 0.9165 )]

[ (0.5064 + 0.4721 )x 0.9165 0.0214 ]
—1.488 L +

0.5064 + 0.4721 + 0.0214 x 0.9165 (0.5064 + 0.4721 )x 0.2119 + 0.0214 J

=2.21

The residual contributions to the activity coefficients follow
M p M D
Iny =1x(1.45 x10 ~ - 0.409 )+1x(2.21 - 0.139 )=1.66

3 3

Iny, =2x(1.45x10 -0.0)+3x(2.21 -0.0)=5.68 x10

Iny =-0.403 +1.66 =1.62

In y, = -0.0007 +5.68 x10 = 4.98 x10

or |y =507, y =1.01

experimental data: y,=44, y =111




