Transfer Function

* Introduce a new concept: Transfer
Function

Input, r(t) System Output, c(t)
> >

It’s governing equation:

d" c(t) m r(t) dr(t)
e +A +Acc(t)=8B,, o o+ B —= it

A, + B,r(t)



Transfer Function

— Laplace Transfer (assuming zero initial
condition)

(A" +---+AS+A JC(s) = (B,s" +---+ B;s+ B, JR(s)

— Rearrange:
C(s) _G(s) = B.s +:--+Bs+B,
R(s) As"+---+AS+ A

Definition of the Transfer Function!




Transfer Function

The Transfer function G(s) Is a
property of the system elements only,
and Is not dependent on the excitation
and initial conditions. In addition,
transfer functions can be used to
represent both closed-loop and open-
loop systems



* Block diagram

IN

Transfer Function

out, r(t)

IN

>
out, R(s)

System
G(s)

Out

out, c(t)

Out

>
out, C(s)



Transfer Function

* Block diagram

Input, r(t)

System

Input, R(s)> G(s)

Out

out, c(t)

Out

>
out, C(s)

* Laplace Transform of the output

C(s) =G(s)R(s)



Transfer Function of Systems

 Cascaded system
E,(s) E,(s) E;(s) E4(s) Es(s)

E,(s) =G, (s)E,(s)
E,(S) =G, (S)E,(s)
E,(s) =G;(S)E;(s)
E;(s) =G, (S)E,(s)
Ey /E, =G,(5)G,(5)G;(s)G, (s)



Transfer Function of Systems

 Cascaded system
* Single-loop feedback system

Input R(S@ E(s) System Output, C(s)
> > G(S) >

A

B(s)

Feedback
H(s)




Transfer Function of Single-loop
Feedback System
 Use the definition of transfer function:
- B(s)=H(s)C(s)
E(s) = R(s)—B(s)
- C(s)=G(s)E(s)
* Solve for C(s)/R(s)
C(s) . G(s)
R(s) 1+G(s)H(s)

A




Transfer Function of Single-loop
Feedback System

C(s) G(Ss) 1
R(s) 1+G(s)H (s) T H(s)

G(s)H (s)>>1

Independent of G(s)!



Transfer Function of Single-loop
feedback system

 Characteristic equation (denominator)
1+ G(s)H(s) =0

» Solving for error

C(s)=G(s)E(s) _  G(s)
R(s) 1+ G(s)H(s)




Transfer Function of Single-loop
feedback system

Therefore
E(s) 1
R(s) 1+G(s)H(s)
EG)| __ 1
R(s) 1+ G(s)

H(s)=1

1
G(s)>>1 G (S)

Error should be very small, if G(s) Is large !



Block diagram transformation

Table 2.5. Block Diagram Transformations

Transformation Original block diagram Equivalent block diagram

: 3 = €l - € e €,
1. Moving a pickoff G > — G

point behind a
block

€] €

Q=

2. Moving a pickoff e gle 2 ‘ G L3
point ahead of a
block

& €)

3. Moving a
summing point
behind a block

€\ e
— ;

4. Moving a e e, Gy
summing point
ahead of a block

Y.

5. Eliminating a D G
feedback loop R

1+GH




R (s)

& 6.9

R (s)

CMajor loop

‘Ez(S)

Gz(S)

Minor loop

H,(s)

E,(s)

C:termediate loop
H 2 (s)

G,(5)

C(5s)

H,(s)

R(s)

9' Gl(S)

il

Gz(s)

G}(S)

H, (s) F

ﬁ G, (s) Gy(s)

] H|(3)

(b)
H; (s)
Gi(s)
> 3 Gyls)
1+G,(s) G5(s) Hy(5) e

6

(¢)

C(s)



Gi(s) Gy(s)
1+ Gy(s) Gy(s) Hy(s)

R (s)
G,(s) Gy(s) >

C(s)
)

G(5) Ga(s) Hy (s)
1+ Gz(S) G;(S) HZ.(S)

1+

H\(s) |&

(d)

R
Vo

R (s) G, (s) Gy(s) G;(s) Gy(s)
1 +Gz (s) G}(S) Hz(S) + G;(S) 64 (s) H}(S)

H|(5) <

(e)

R(s) G,(s) G,(5) Gy(5)G, (s) L
1 + G,(5)G,(s5) G, (5) Gy () H,(5) + G,(5)Gy(s5) Hy(5)+ G3(5) Gy(s) Hy(s)

6

C(s)

Figure 2.11 Reducing a multiple-loop system containing complex paths. (a) The original system. (b)
Rearrangementof the summing points of the intermediate and minor loops. (¢) Reduction ofthe equiva-
lentintermediate loop. (d) Reduction of the equivalent minor loop. (e) The equivalentfeedback system.

() The system transfer function.



EXAMPLE 2-1

Consider the system shown in Figure 2-13(a).
Simplify this diagram.

By moving the summing point of the negative
feedback loop containing H2 outside the
positive

feedback loop containing H1, we obtain Figure

2—-13(b). Eliminating the positive feedback
loop,

we have Figure 2-13(c).The elimination of the
loop containing H2/G1 gives Figure 2—
13(d).Finally,

eliminating the feedback loop results in Figure
2—-13(e).
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Quiz Il 15min
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C(s) GGG, +G,) C(s) G,

R(s) 1+ G,G,G.H D(s) 1+ G,G,G.H
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Signal Flow Graphs

1144 PROCEEDINGS OF THE I.R.E. September

and

8.00(s+ 1.5) | 12.00(s +4)  4.47337
242545 s24H454+13 0 s+ 4

Deriving the element values from the above, we
finally obtain the lattice shown in Fig. 6. This lattice
has the desired transfer impedance.

ConcLusioN

A simple method has been demonstrated for the real-
ization of any minimum-phase or nonminimum-phase
transfer impedance as an open-circuited lattice. The
arms of the lattice are of a simple form and contain no
mutual inductance. Any inductance used in the lattice
always appears with an associated series resistance so
that low-Q coils may be used in building the network.

The procedure presented allows a measure of control
over the (s of the coils used in the final network. Fig. 6—Lattice obtained for illustrative example where Z.=p/q.

OHMS, HENRYS, FARADS

FEEDBACK THEORY-—Some Properties
of Signal Flow Graphs”

SAMUEL J. MASONT, SENIOR MEMBER, IRE



Signal Flow Graphs

920
CONCLUSION

The elliptic function transformation (1). is used here
for the purpose of locating zeros and poles of a low-pass
filter network function. Charts of the type shown in
Figs. 7 to 12 may be prepared for any range of applica-
tion whenever desired. The compactness of the expres-
sions that give the tolerance and other characteristic
quantities makes the preparation of these charts which
represent a whole group of network functions with
many singularities a matter of evaluating only a few

PROCEEDINGS OF THE IRE

July

terms together with a few rational operations. These
charts, after they are prepared, will be very helpful for
design purposes. For instance, if a required attenuation
beyond twice the cut-off frequency must be greater than
13 db, Fig. 10 indicates that a filter function with the
charge arrangement of Fig. 3(b) and values of ¢ and ¢
of 0.810 and 0.673 respectively will satisfy the require-
ment. The locations of all poles and zeros of this filter
are determined in the z-plane. The locations of zeros and
poles in the s-plane may be found by applying the in-
verse transformation.

Feedback Theory—Further Properties of Signal
Flow Graphs®

SAMUEL J. MASONt



Signal-Flow Graphs and Mason’s
Theorem
A signal-flow graph is a topological

representation of a set of linear
equations having

y=Yay,  i=12-n

(Yo = éyl +by, +cy,
Y, =dy,
Y, =€y, + 1y,

- Y5 = gYs +hy,




Signal-Flow Graph

— A source is node having only outgoing
branches y,

— A sink is anode having only incoming
branches y:



Signal-Flow Graph

C g
— A path is a group of connected branches
having the same sense of direction (eh b)

— Forward paths are paths which originate
from a source and terminate at a sink and
along which no node is encountered more
than once (eh adfh b)




Signal-Flow Graph

— Feedback loop is a path originating from a
node and terminating at the same node.
In addition, a node cannot be encountered
more than once (b dfc)




Signal-Flow Graph

— Path gain is the product of the coefficients
associated with the branches along the
path

— Loop gain is the product of the coefficients
associated with the branches forming a
feed back loop




Reduction of the signal-flow-graph

(d) (e)



(a) Addition
1. The signal-flow graph in Figure 2.13a represents the linear equation

y3 = ay; + by,. 2.131)
2. The signal-flow graph in Figure 2.13b represents the linear equation
y2 =(a+by. (2.132)
(b) Multiplication. The signal-flow graph in Figure 2.13¢ represents the linear
equation
Y4 = abey,. (2.133)

(c) Feedback loops
1. The signal-flow graph in Figure 2.13d represents the linear equation

a
1 + ab

2= yi- (2.134a)

2. The signal-flow graph in Figure 2.13¢ represents the linear equation

a
y2 =TT h (2.134b)




Reduction of the Signal-Flow
Graph

» Signal-Flow Graph Reduction
— Addition
— Multiplication
— Feedback loops

 Mason’s theorem

G — Zk G A,
A




where

A=l L b b5 Lk b1 L,
L, = gain of each closed loop in the graph

L, = product of the loop gains of any two nontouching closed loops (loops are
considered nontouching if they have no node in common)

Ly = product of the loop gains of any m nontouching loops
G = gain of the Kth forward path

Ak = the value of A for that part of the graph not touching the Kth forward path
(value of A remaining when the path producing G is removed).

A is known as the determinant of the graph and Ay is the cofactor of the forward
path K. Basically, A consists of the sum of the products of loop gains taken none at a
time (1), one at a time (with a minus sign), two at a time (with a plus sign), etc.; Ag
contains the portion of A remaining when the path producing G is removed. The
proof of this general gain expression is contained in Reference [8]. A few examples
follow in order to show how this expression may be used.



Y,

(a)

(d)



Example 1. For Figure 2.14a,

Therefore,

Example 2. For Figure 2.14b,

A =1-—cg— bcdf
G, = abcde.

Therefore,

Al = 1,
Vs abcde

Gz;l—zl—cg——bcdf'




Example 3. For Figure 2.14c,

A =1 — (i + cdh),

G, = abcdef ,

G, = agdef ,

Gy = agjf ,

G4 = abcjf,

A =1, A3= 1 =,
My =11, Ag=1

Therefore,

b abedef + agdef (1 — i) + agjf (1 — i) + abcjf

G
Y1 1 — (i + cdh)

Example 4. For Figure 2.14d,

A = 1 — (bi + dj + fk + bedefgm) + (bidj + bifk + djfk) — bidjfk,
G, = abcdefgh,
Al = 1

Therefore,

B abcdefgh

G=—== .
yi 1 — (bi + dj + fk + bedefgm) + (bidj + bifk + djfk) — bidjfk




Single-loop feedback system

Input R(;s@ E(s) X System | Qutput, C(s)

& G(s) >
B(s)
Feedback
H(s) i‘
C(s)  G(s)

R(s) 1+G(s)H(s)



Apply Mason’s Theorem to
Single-loop feedback system

1 G(s)
R(S)O—)—@ C(s)
-H(s)

A=1-|-G(s)H(s)|=1+G(s)H(s)
G, =1-G(s) =G(s)
A, =1

c_C6)__ G(s)
R(s) 1+G(s)H(s)
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Review of Matrix Algebra

Identity Matrix  (a; =1, a; = 0)
Diagonal Matrix (a;#0, a; = 0)
Symmetric Matrix (@5 = ;)
Skew-Symmetric Matrix

(@; =0, a; = —a;)
Zero Matrix
Adjoint Matrix (& < Ajj)
Transpose (@ < &)



Adjoint Matrix

« Cofactor: Cofactor Aj.

« The matrix B whose element in the ith row
and jth column equals Aji is called the
adjoint of A and is denoted by ad] A, or

B = (b;) = (A;) = adj A

 That Is, the adjoint of A is the transpose of
the matrix whose elements are the cofactors

of A, or _ ~
""1” "'d':| vas J"-l!'|'||

- ""-lllf "'d':: s "f!'ﬂ:
Hd] A= : : :

"H.l.'" ""ll"u e Ar.:r.re



e |[nverse

« Example

2







Review of Matrix Algebra

Addition and subtraction
Multiplication by a scalar
Multiplication of two matrices
nverse of a matrix
Differentiation of a matrix
ntegration of a matrix




State Variable Method

Use a representation of the system
dynamics that contain the system’s
Input-output relationship (similar to
that of a transfer function) but in terms
of n first-order differential equations to
represent the nth order system



State Variable Method

« State Representation in Phase-Variable
Canonical Form

X(t) = Px(t) + Bu(t)

where X(t)is the state vector, X(t)is its time
derivative, U(t) is the input vector, Pis the

state (companion) matrix, and B is the input
matrix



State Variable Method

— Block Diagram of the Phase-Variable
Canonical Form (from Definition Equation)

D

T Qzﬁ X(t) Integrator ‘X—(t—>®&>
u(t A




State Variable Method

— Block Diagram of the Phase-Variable
Canonical Form (from Definition Equation)

u(t) O X(1) Xx(t) r1e®)
—> Integrator ‘ —>




State Variable Method

pll p12
E _ p.21 p22
| pnl pnz

Xl — pllxl(t)+"’
X, = Py X () +--

Xn — pnlxl(t) L

Pn

P2n

pnn

| 00

bll
D,

Dy

b,,
b22

bnz

+ pln Xn (t) + bllul (t) +-

+ Pon X, (1) + by, (1) +-

+ pnn Xn (t) + bnlul (t) +-

1m

2m

nm

1m m(t)
2m m(t)

nm m (t)



State Variable Method

System’s Output
c(t) = Lx(t) + Du(t)

where C(t)is the output vector, Lis the out-
put matrix, D is the coefficient matrix
represents the direct transmission between
Input and output, In most case equal to zero.

Therefore
c(t) = Lx(t)



State Variable Method

 Example

P(s) = () = >
UGs) s®>+8s?+9s +2
d3c(t) .8 d’c(t) L9 dc(t)

dt’ dt’ dt

+ 2¢(t) = 5u(t)

 Define the state variable as:

X,(1) = c(t), X, (1) = €t), x,(t) = €(v),



State Variable Method

« We have

X,(1) = %, () = ),
X,(8) = X,(1) = €,
X5 (1) = —2x,(t) — 9%, () — 8x,(t) + 5u(t)

e Recall Phase-Variable Canonical Form
x(t) = Px(t) + Bu(t)
c(t) = Lx(t)



State Variable Method

 Example

\Y

e,

Rocket trajectory ’
F /
* l g
/

L4
—_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_—



Example 3. In the third example used to illustrate the representation of the dy-
namics of a system in state-variable form, consider the problem of rocket flight in
two dimensions. Representing the vertical and horizontal axes by v(f) and r(¢), re-
spectively, the describing equations are given by

r(t) = F(f) cos6(¢), (2.218)
v(t) = F(f)sin6(z) — g, (2.219)

where F is thrust force per unit mass, 6 is thrust direction relative to the r axis, and g
is the gravitational force. The control inputs are considered to be F(f) and (7).
Defining

xi(0) =r(t), x(8) = (o),
x3() = v(r), x4(2) = v(2),
u(t) = F(), u(?)=6(2),

we find that the dynamics are described by

x1(1) = x5(1),

X2(8) = uy(£) cos uy(1),
x3(1) = x4(2),

X4(1) = u () sinuy(2) — g.



This system can also be described in phase-variable canonical form by

x(7) = Px(f) + Bu(?), (2.220)
c(1) = Lx(5), (2.221)
where
" x (1) " x0(0) ] 61 8 8
LA o e b gy g0 9 )
X e xi(t) s XL xi(z) Sl 08 O Gl c(t)—['v(t)]
_X4(t)_ _)'C4(t)_ _O 0 00 _J
0 00 0] 2 0 g
b1 00 uy (£) cos () 10 0 ¢
R boiol ool M= by 00 o, Lz[o 0 1 0]'
gyl L uy (D) sinuy(t) — g




2.42. (a) Defining x,(f) = ¢() and x,(7) = ¢&(7), the plant dynamics become

x1(1) = x2(0),  X2(1) = 2x2(0) — x, (),

or in the vector/matrix form

x(1) =Px(1), ¢(r) = Lx(),
where
w=["0] wo-[20) P=[5 5}
L= 0
(b) With x,(¢) = ¢(r) and x,(f) = ¢(¢), the plant dynamics become
x1(0) = x(1),  Xp(t) = =2x5(8) — x1(1) + 4,

or in vector/matrix form

x(?) = Px(t) + Bu(?), c¢(¢) = Lx(1),

‘where

St r'361(5)-’ iy -xl(t)], P—_—[ 0 1]

| x2(2) | %5(2) e o
§ '0 0] 1o
=lo 1} "= _A],

L=[1 o0



(¢) With x(?) = c(), x5(¢) = ¢(f), and x3(f) = ¢(¢), the plant dynamics
becomes

X1(1) = xy(1),
X)(1) = x3(0),
X3(2) = —=2x,(1) — 2x3(2) = 3x3(1),

or, in vector/matrix form,
x(1) =Px(), c(t)=Lx(),

where

x1(0) 1 x1(2) 0 | 0
M= 6, M=)l P={ 0 .0 E 1
x3(1) x3(?) -2 =2 =3

La={l 0 0]



(d) With x,(¢) = (1), x(t) =¢(r), and x;3(f) = ¢(¢), the plant dynamics
become

x1() = x(1),
%2(0) = x3(0), _
).6'3(1) — —'—le(t) - 2XZ(I) 2 3.7C3(t) + A,

or, in vector/matrix form,

(1) = Px(t) + Bu(r), ¢(?) = Lx(¢),

[ x1(2) x1(2) Pl T
=10}, x(D=|1x0}] P= 9 1 fip
| x3(2) x3(1) -2 -2 -3

100 <0 0
B=|00 0| aw=|0]| L=[1 0 0]
80 A




Homework IV

2.42. Determine the phase-variable canonical form for the systems characterized by
the following differential equations:

(a) d;‘;gt) +2 d;(t’) +e(t) =0,

(b) d;:gt) +2 dz(:) + c(t) = A4,

: a0, 0,
@ ";‘;5’) +3 d;jg’) +2%0 1 2= 4.

2.43. The approximate linear equations for a spherical satellite are given by

Iél(l) = 6001&3([) = L4,
16,(p) = L,,
163(t) — woI6,(t) = L,

where 6,(7), 6-(1), 65(¢) represent angular deviaitons of the satellite from a set
of axes with fixed orientation, L, L,, L, represent applied torques, / repre-
sents the moment of inertia, and w, represents the angular frequency of the
oriented axis. Determine the phase-variable canonical form of the system’s
dynamics.



State-Variable Diagram

— Example

P(s) - C(s) s*+4s+1

S U(s) s®+9s%+8s

Dividing numerator and denominator by s3

~C(s) sTt+4s7+s”
U(s) 1+9s"+8s™

P(s)

Force terms in the numerator, pure integrators !



State-Variable Diagram

Define the error node of the system

U (s)

E(s) =
(5) 1+95*+8s7°

then
And C(s) = (s‘l +4s% +57° )E(s)

E(s)=U(s)—9sE(s) —8s°E(s)
Draw diagram
More example ?



State Transition Matrix

* Recall phase-variable canonical
eguation
X(t) = Px(t) + Bu(t)
« Laplace transfer
sX(s)—x(0")=PX(s)+BU(s)
 Rearrange
sX(s)—PX(s)=x(0")+BU(s)



State Transition Matrix

X(s)=[s1 - P]"x(0") +[s] - P]"BU(s)

* Inverse Laplace transfer (the state
transition equation)

X(t) = DOX(0") + [ @(t—7)Bu(r)dz
* The state transition matrix is defined as

o) = {s1-P]]



State Transition Matrix

* Properties of state transition matrix



State Transition Matrix

 For more general initial time, recall
X(t) = DOX(0") + [ @(t—7)Bu(r)dz

* Rearrange and let t =t
X(t,) = ©(t,)X(0") + [ ®(t, - 7)Bu(r)dz
©*(t,)X(t,) = X(0") + @ (t,) [ ©(t, —7)Bu(r)d 7
X(07) =@ (t,)X(t,) ~ @ (t) [ @(t, ~ 7)Bu(z)dz

e |

Pay attention to the order of the terms in matrix multiplication !
The—commutative law



State Transition Matrix

« Substitute back to the state transition equation

)_((t) — g(t)g(_to))_((to)
~DOD(t,) [ Oty ~7)Bu(z)dz + [ @(t-7)Bu(r)dz

* Second term becomes

- D(O)P(—,) [ ©(t, ~7)Bu(r)d
=—d(t-t,)[ D(t, - 7)Bu(r)dr
= [~ (t-t,)0(t, - 7)Bu(r)dr



State Transition Matrix

e and

_ ;0 g(t_to)gg(f)dT‘Fjtg(t_f)gg(f)df

= [ @(t-7)Bu(r)ds

 then

X(t) = (t—t,)x(t,) + | ©(t-7)Bu(z)dz



State Transition Matrix

« Example: an open loop system,

~C(s) 1

P(8) = U(s) s2

— Differential equation form is

C(t) =u(t)
— Therefore, define the state variables

X () =c(t)  X(t) =c(t)



State Transition Matrix

thus

%, (1) = X, (t) = ¢(t)
| %0 =¢0) =u(

In the phase-variable canonical form
X(t) = Px(t) + Bu(t)

| O
I

B =

0

1

X(t) =

X (t)

| X, (X)_

X(t)

X, (t)

X, (X)_




State Transition Matrix

125 2o o) o

s 1] [s 1]
[Sl B P]_l _ ad][SL—i] _ _O S | _ _O S | _ _%
= = st-P s -1 s* |0
0 s
— The state transition matrix is,
4 ) (U)ot
o) = st -P] }{ ] U(t)}

where U (t) is the unit step function

7= "’NlH




State Transition Matrix

— Assume the initial conditions,

| x(0)] |1
x(0 )—_X2 SINE

and u(0) =0
x(t) = @(t)x(0")



State Transition Matrix

— Therefore, (notice there is an error in the
book)

x(t)] [U@) t

Z(t):_xz(t)_: T E

— Or
X, (t) = U (t) + 2t

X, =2U (t)



Total Solution of the State
Equation

« Example: a system describe by

E(t) + 26(t) +c(t) = F(t) + r(t)

* Determine the output c(t), given
r(t) =sint
* Initial conditions

c(0)=1 ¢(0)=0



Total Solution of the State
Equation

e Determine the state transition matrix

ot)= s -P]"]

* Determine the output c(t)
x(t) = DOX(0") + [ d(t-7)Bu(r)dz
c(t) = Lx(t)



Total Solution of the State
Equation

e Determine the state transition matrix
— Define the state variable

X (t) — C(t)
X, (t) — C(t)

and we have

u(t) = r(t)
a(t) = £ (t)



Total Solution of the State
Equation

— First order differential equation
representation of the system

Xl (t) = X, (t)
%, (t) = 2X, (t) — X, (t) + u(t) + u(t)

— The phase-variable canonical form is,

X(t) = Px(t) + B(u(t) +u(t))



Total Solution of the State
Equation

B 0 B X, (t) rey X, (1)
M X“){xm} *“){ux)}

0 1 s -1
= = 0 1 -1 -2| |1 s+2]

where

I
|
O
=
N
1
| OO




Total Solution of the State

|

Equation
— Then
s+2 1 s+2 1
[sI—P}l_adj[SL_E] {—1 J_{—l S
= = lsl-p[ s 1] (s+D)?
1 s+2

— Therefore, the state transition matrix iIs

(L+t)e™

—t

()= 1 - PJ*|=

| —te

S+2

te

(1-t)

| (s+1)?

(s+1)?
1

(s+1)2

—t

(s+1)° |



Total Solution of the State
Equation

* Determine the output c(t)
X(t) = DOX(0") + [ @(t—7)Bu(r)dz

Substitute x(t) into
c(t) = Lx(t)
result in

c(t) = LOMX(0") + [ Ld(t-7)Bu(r)dz



Total Solution of the State

Equation
from
X (t) — C(t)
| X, (t) = Cc(t)
and given
c(0)=1 ¢(0)=0
we have
L=[ 0]
X(0*) = %, (0) | _§(O)_ |
%,(0)] [¢(0)] [0




Total Solution of the State
Equation
at the same time, given
u(t) =r(t) =sint
Therefore
U(z)+u(z) =r(z)+r(zr)=sinzt+cosr

and 0
E —




Total Solution of the State
Equation

Substitute all of them into c(t) we have,

o(t) = [1 O]{(l-l—tzet e 1

e 1-t)e™ |0
t L+t—7)e "7 et
T jo [1 O] —(t-7) —(t-7)
e l-t+z)e ™"

0
X . (sinz+cosz)dr




Total Solution of the State
Equation

On simplifying
c(t) = e (t+1)+ j; (t—7)e " |sin r +cosz)dr

— Ee‘t +te™ +Esint—icost
2 2 2

check the initial conditions

C(O)=§+O+O—1x1=1
2 2

C(O):—g+0+1+%x1+0:0



A-9-T.

Homework V-1

Obtain the response y(t) of the following system:

HE ks MR

where u(t) is the unit-step input occurring at ¢

u(t)

0, or

1(t)

x1(0)
IE{D}

I

0
0

|



Homework V-2

2.75. Substances x;(¢) and x,(¢) are involved in the reaction of a chemical process.
The state equations representing this reaction are as follows:

x1(8) = —4x;(1) + 2x,(0),
X2(2) = 2x1() — x5(0).

(a) Determine the state transition matrix of this chemical process.

(b) Determine the response of this system when:

x1(0) = 200,000 units,
x5(0) = 10,000 units.

(¢) At what value of time will the amount of substances x;(f) and x,(¢) be
equal?



