
Transfer Function

• Introduce a new concept:  Transfer 

Function

It’s governing equation:
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Transfer Function

– Laplace Transfer ( assuming zero initial 

condition) 

– Rearrange:
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Definition of the Transfer Function!



Transfer Function

The Transfer function G(s) is a 

property of the system elements only, 

and is not dependent on the excitation 

and initial conditions.  In addition, 

transfer functions can be used to 

represent both closed-loop and open-

loop systems



Transfer Function

• Block diagram

Input, r(t) System

G(s)

Output, c(t)

Input, R(s) Output, C(s)



Transfer Function

• Block diagram

• Laplace Transform of the output

Input, r(t) System

G(s)

Output, c(t)

Input, R(s) Output, C(s)
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Transfer Function of Systems

• Cascaded system

G1(s)
E1(s)

G2(s)
E2(s)

G3(s)
E3(s)

G4(s)
E4(s) E5(s)
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Transfer Function of Systems

• Cascaded system

• Single-loop feedback system

Input R(s) System

G(s)

Output, C(s)
+

−

Feedback

H(s)

E(s)

B(s)



Transfer Function of Single-loop 

Feedback System

• Use the definition of transfer function:

• Solve for C(s)/R(s)
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Transfer Function of Single-loop 

Feedback System

Independent of  G(s) !
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Transfer Function of Single-loop 

feedback system

• Characteristic equation (denominator)

• Solving for error
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Therefore

Transfer Function of Single-loop 

feedback system
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Error should be very small, if G(s) is large !



Block diagram transformation







EXAMPLE 2–1

• Consider the system shown in Figure 2–13(a). 

Simplify this diagram.

• By moving the summing point of the negative 

feedback loop containing H2 outside the 

positive

• feedback loop containing H1, we obtain Figure 

2–13(b). Eliminating the positive feedback 

loop,

• we have Figure 2–13(c).The elimination of the 

loop containing H2/G1 gives Figure 2–

13(d).Finally,

• eliminating the feedback loop results in Figure 

2–13(e).







Quiz III 15min



Answer



Homework II



Signal Flow Graphs



Signal Flow Graphs



Signal-Flow Graphs and Mason’s 

Theorem

A signal-flow graph is a topological 

representation of a set of linear 

equations having
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Signal-Flow Graph

– A source is node having only outgoing 

branches y1

– A sink is a node having only incoming 

branches y5

y1 y2
y3 y4 y5
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f

g

h



Signal-Flow Graph

– A path is a group of connected branches 

having the same sense of direction (eh b)

– Forward paths are paths which originate 

from a source and terminate at a sink and 

along which no node is encountered more 

than once  (eh adfh b)
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Signal-Flow Graph

– Feedback loop is a path originating from a 

node and terminating at the same node.   

In addition, a node cannot be encountered 

more than once  (b dfc)
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Signal-Flow Graph

– Path gain is the product of the coefficients 

associated with the branches along the 

path

– Loop gain is the product of the coefficients 

associated with the branches forming a 

feed back loop



Reduction of the signal-flow-graph





Reduction of the Signal-Flow 

Graph

• Signal-Flow Graph Reduction

– Addition

– Multiplication

– Feedback loops

• Mason’s theorem
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Single-loop feedback system

Input R(s) System

G(s)

Output, C(s)
+

−

Feedback

H(s)

E(s)

B(s)
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Apply Mason’s Theorem to 

Single-loop feedback system
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Homework III



Review of Matrix Algebra

• Identity Matrix (aii ＝1, aij ＝ 0)

• Diagonal Matrix (aii≠0, aij ＝ 0)

• Symmetric Matrix (aij ＝ aji )

• Skew-Symmetric Matrix

(aii ＝ 0, aij ＝ －aji )

• Zero Matrix

• Adjoint Matrix (aij ← Aij )

• Transpose (aij aji )



Adjoint Matrix

• Cofactor: 

• The matrix B whose element in the ith row 

and jth column equals Aji is called the 

adjoint of A and is denoted by adj A, or

• That is, the adjoint of A is the transpose of 

the matrix whose elements are the cofactors 

of A, or



• Inverse

• Example  





Review of Matrix Algebra

• Addition and subtraction

• Multiplication by a scalar

• Multiplication of two matrices

• Inverse of a matrix

• Differentiation of a matrix

• Integration of a matrix



State Variable Method

Use a representation of the system 

dynamics that contain the system’s 

input-output relationship (similar to 

that of a transfer function) but in terms 

of n first-order differential equations to 

represent the nth order system



State Variable Method

• State Representation in Phase-Variable 

Canonical Form

)()()( tuBtxPtx 

where        is the state vector,        is its time 

derivative,         is the input vector,     is the 

state (companion) matrix, and     is the input 

matrix
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State Variable Method

– Block Diagram of the Phase-Variable 

Canonical Form (from Definition Equation)
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State Variable Method

– Block Diagram of the Phase-Variable 

Canonical Form (from Definition Equation)
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State Variable Method
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State Variable Method

System’s Output

where        is the output vector,     is the out-

put matrix,     is the coefficient matrix 

represents the direct transmission between 

input and output, in most case equal to zero.

Therefore
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State Variable Method

• Example

• Define the state variable as:
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State Variable Method

• We have

• Recall Phase-Variable Canonical Form
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State Variable Method

• Example 
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Homework IV



State-Variable Diagram

– Example

Dividing numerator and denominator by s3

Force terms in the numerator, pure integrators !
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State-Variable Diagram

Define the error node of the system

then

And

Draw diagram

More example ?
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State Transition Matrix

• Recall phase-variable canonical 

equation

• Laplace transfer

• Rearrange
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State Transition Matrix

• Inverse Laplace transfer (the state 

transition equation)

• The state transition matrix is defined as
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State Transition Matrix

• Properties of state transition matrix 
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State Transition Matrix

• For more general initial time, recall

• Rearrange and let t = t0
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Pay attention to the order of the terms in matrix multiplication !

The—commutative law



State Transition Matrix

• Substitute back to the state transition equation

• Second term becomes
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State Transition Matrix

• and

• then
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State Transition Matrix

• Example: an open loop system,

– Differential equation form is 

– Therefore, define the state variables

2
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State Transition Matrix

thus

in the phase-variable canonical form
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State Transition Matrix

– The state transition matrix is,
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State Transition Matrix

– Assume the initial conditions,

and u(0) = 0
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State Transition Matrix

– Therefore, (notice there is an error in the 

book)

– or
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Total Solution of the State 

Equation

• Example: a system describe by

• Determine the output c(t), given 

r(t) = sin t

• Initial conditions
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Total Solution of the State 

Equation

• Determine the state transition matrix

• Determine the output c(t)
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Total Solution of the State 

Equation

• Determine the state transition matrix

– Define the state variable

and we have
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Total Solution of the State 

Equation

– First order differential equation 

representation of the system

– The phase-variable canonical form is,
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Total Solution of the State 

Equation

where 

and
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Total Solution of the State 

Equation

– Then

– Therefore, the state transition matrix is
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Total Solution of the State 

Equation

• Determine the output c(t)

Substitute x(t) into

result in
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Total Solution of the State 

Equation

from

and given

we have
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Total Solution of the State 

Equation

at the same time, given

Therefore

and
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Total Solution of the State 

Equation

Substitute all of them into c(t) we have,
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Total Solution of the State 

Equation

On simplifying

check the initial conditions

 

tttee

dettetc

tt

t
tt

cos
2

1
sin

2

1

2

3

)cos(sin)()1()(
0

)(









  

001
2

1
10

2

3
)0(

11
2

1
00

2

3
)0(





c

c





Homework V-1



Homework V-2


