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Routh-Hurwitz Stability Criterion

• Assume the characteristic polynomial is

• where  BBm+1m+1    00

• A necessary (but not sufficient) condition 
for all roots to have non-positive real parts 
is that all coefficients have the same sign.

• All coefficients must be nonzero.

1+G( s )H (s )=B1 s
m
+B2s
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+⋯+Bm s+Bm+1



  

The Routh ArrayThe Routh Array
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wherewhere

etc.etc.

Q( s )=an s
n
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Routh-Hurwitz Stability Criterion

• Necessary and sufficient conditions:

• If all elements in theIf all elements in the first column of the Routh of the Routh 
array have the array have the same sign, then all roots of the , then all roots of the 
characteristic equation have negative real parts.characteristic equation have negative real parts.

• If there are sign changes in these elements, then If there are sign changes in these elements, then 
the number of roots with non-negative real parts is the number of roots with non-negative real parts is 
equal to theequal to the number of sign changes number of sign changes..

• Elements in the first column which are Elements in the first column which are zero define define 
a special case.a special case.



  

Routh-Hurwitz Stability Criterion

• Consider

• unstable
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+4 s2
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Routh-Hurwitz Stability Criterion

• Consider

• As   approaches zero, 4th goes negative, 5th positive, 
unstable
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Routh-Hurwitz Stability Criterion

• Consider

• 0< Kmax = 2
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+2 s2
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Nyquist Stability Criterion

• It is based on the complex analysis result known as 
Cauchy’s principle of argument

• The system transfer function is a complex function

• (Nyquist, 1932), by applying Cauchy’s principle of 
argument to the open-loop system transfer function
, we will get information about stability of the clos
ed-loop system transfer function and arrive at the 
Nyquist stability criterion



  

Nyquist Stability Criterion

• The importance of Nyquist stability lies in the fact 
that it can also be used to determine the relative de
gree of system stability by producing the so-called 
phase and gain stability margins. These stability m
argins are needed for frequency domain controller 
design techniques.

• The Nyquist method is used for studying the stabil
ity of linear systems with pure time delay.



  

Nyquist Stability Criterion

• For a single input single output (SISO) 
feedback system the closed-loop transfer 
function is given by

• The closed-loop system poles are 
obtained by solving the following equation



  

Nyquist Stability Criterion

• Consider the complex function

   whose zeros are the closed-loop poles of t
he transfer function

• In addition, it is easy to see that the poles 
of D(s) are the zeros of M(s).

• At the same time the poles of D(s) are the 
open-loop control system poles since they 
are contributed by the poles of H(s)G(s)



  

Cauchy’s principle of argument

• Let F(s) be an analytic function in a closed r
egion of the complex plane s given in the Fig
ure 1 except at a finite number of points (na
mely, the poles of F(s)).

mapping



  

Cauchy’s principle of argument

• as s travels around the contour in the s- pla
ne in the clockwise direction, the function e
ncircles the origin in the 

                                       -plane in the same dire
ction N times, see the Figure, with N given b
y

where z and p stand for the number of zeros 
and poles (including their multiplicities) of t
he function F(s) inside the contour



  

Cauchy’s principle of argument

• The above result can be also written as

• which justifies the terminology used, “the 
principle of argument”.



  

Nyquist Plot

• The Nyquist plot is a polar plot of the functi
on

• when travels around the contour given in th
e Figure 2



  

Nyquist Plot

• The contour in this figure covers the whole 
unstable half plane of the complex plane s,

                  . Since the function D(s), according 
to Cauchy’s principle of argument, must be 
analytic at every point on the contour, the p
oles of D(s) on the imaginary axis must be e
ncircled by infinitesimally small semicircles



  

Nyquist Stability Criterion

• It states that the number of unstable closed-
loop poles is equal to the number of unstabl
e open-loop poles plus the number of encircl
ements of the origin of the Nyquist plot of th
e complex function D(s).

• applying Cauchy’s principle of argument to 
the function with the s-plane contour given i
n Figure 2



  

Nyquist Stability Criterion

• Note that Z and P represent the numbers of 
zeros and poles, respectively, of D(s) in the u
nstable part of the complex plane. 

• At the same time, the zeros of D(s) are the cl
osed-loop system poles, and the poles of D(s) 
are the open-loop system poles (closed-loop 
zeros)



  

Nyquist Stability Criterion

• The above criterion can be slightly simplifie
d if instead of plotting the function  

• plot only the function G(s)H(s) and count en
circlement (clock-wise) of the Nyquist plot o
f around the point (-1, j0), so that the modifi
ed Nyquist criterion has the following form



  

Nyquist Stability Criterion

• The number of unstable closed-loop poles (Z) is eq
ual to the number of unstable open-loop poles (P) 
plus the number of encirclements (N) of the point 
(-1, j0), of the Nyquist plot of G(s)H(s)

• If the system is originally open-loop unstable Righ
t-half-plane (RHP) poles represent that instability. 
For closed-loop stability of a system, the number o
f closed-loop roots in the right half of the s-plane 
must be zero. 



  

Nyquist Stability Criterion

• Hence, the number of counter-clockwise enc
irclements (-N) about (-1, j0), must be equal 
to the number of open-loop poles in the RH
P. 

• Any clockwise encirclements of the critical 
point by the open-loop frequency response 
(when judged from low frequency to high fr
equency) would indicate that the feedback c
ontrol system would be destabilizing if the l
oop were closed. 



  

Phase and Gain Stability Margins

• Two important notions can be derived from 
the Nyquist diagram: phase and gain stabilit
y margins. 



  

Phase and Gain Stability Margins

• Give the degree of relative stability; in other 
words, they tell how far the given system is f
rom the instability region. Their formal defi
nitions are given by

• where  cg and  cp stand for, respectively, the 
gain and phase crossover frequencies,



  

Phase and Gain Stability Margins

• from Figure 3



  

• Example 1

• Since this system has a pole at the origin, 
the contour in the s-plane should encircle it 
with a semicircle of an infinitesimally small 
radius. This contour has three parts (a), (b), 
and (c). Mappings for each of them are 
considered below. 



  

• (a) On this semicircle the complex variable i
s represented in the polar form by

• Substituting

• Then 

• Thus, the huge semicircle from the s-plane 
maps into the origin in the G(s)H(s)-plane



  

• (b) On this semicircle the complex variable i
s represented in the polar form by



  

•                                                        so that we 
• have

• Since   changes from

• Will change from                The infinitesimally small se
micircle at the origin in the s-plane is mapped into a s
emicircle of infinite radius in the G(s)H(s)-plane.         
                                                                                 



  

• (c) On this part of the contour takes pure im
aginary values, i.e. s = j with  changing f
rom                  Due to symmetry, it is 
sufficient to study only mapping along           
                , the real and imaginary parts of t
he function G(j)H(j), which are given by



  

• neither the real nor the imaginary parts can 
be made zero, and hence the Nyquist plot ha
s no points of intersection with the coordina
te axis. 



  

• at point B             , the plot at                  will 
end up at the origin, the Nyquist diagram co
rresponding to part (c) has the form as sho
wn in Figure 3. Note that the vertical asymp
tote 渐近线 of the Nyquist plot in Figure 
3 is given by

   since at those points



  

• From the Nyquist diagram we see that N = 0 
and since there are no open-loop poles in th
e left half of the complex plane, i.e. p = 0, we 
have Z = 0 so that the corresponding closed-
loop system has no unstable poles.



  

• Example 2

• For cases (a) and (b) we have the same anal
yses and conclusions.

• the real and imaginary parts ofG(j)H(j)



  

• It can be seen that an intersection with the r
eal axis happens at             at the point 

• The Nyquist plot is given in Figure 4



  

• Note that the vertical asymptote is given by

• Thus, we have N = 0,  P = 0, and Z = 0 and 
so that the closed loop system is stable
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