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Auxiliary Function

• The term "auxiliary function" usually refers 
to the functions created during the course 
of a proof in order to prove the result.


• In thermodynamics, quantities with 
dimensions of energy were introduced that 
have useful physical interpretations and 
simplify calculations in situations where 
controlled set of variables were used.



Work

• In general, work can be divided into two 
parts:

• work of expansion and contraction, and 

• work of the sum of all other forms


• Therefore in the reversible case,


where µi will be defined as the chemical 
potential of species i, but not yet at this 
moment. 
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Euler’s theorem

• Euler's homogeneous function theorem

States that:  Suppose that the function ƒ is 
continuously differentiable, then ƒ is 
positive homogeneous of degree n if and 
only if


• n= 1, f is a first-order homogeneous 
function
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Euler’s theorem

• Let f(x1,…, xn) be a first-order homogeneous 
function of x1,…, xn.


• Let ui = λxi


• Then f(u1,…,un) = λ f(x1,…,xn) 

• Differentiate with respect to λ;

( ) ( ) ( )1                ......
1

1
n

ix

n x,,xf=
λ
u,,uf

⎟
⎠

⎞
⎜
⎝

⎛
∂

∂



Euler’s theorem

• From calculus,


• and, 
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Euler’s theorem

• Substitute back to eq. (1),


• and take λ = 1, 


• This is Euler’s theorem for first-order 
homogeneous functions
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Legendre Transform

• Recall the 2nd law of thermodynamics,


• and

• we arrive at,


• Thus, E=E(S,V,n1,n2,…nr), is a natural function of 
S, V, and the ni’s.
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• However, experimentally, T is much more 
convenient than S.  


• Assume f = f(x1,…,xn) is a natural function of 
x1,…,xn.


• Then,


• Let 

( )

( )
jxiii

n

=i
i

i

n

=i
jxin

xf=udxu=df

xxf=)x,,f(x

∂∂

∂∂

∑

∑

/   

/...

1

1
1

i

n

+r=i
idxuf=g ∑−

1

Euler’s theorem for 

first-order 

homogeneous functions



• Then,


• Thus, g = g(x1,…,xr, ur+1,…,un) is a natural 
function of x1,…,xr and the conjugate 
variables to  xr+1,…,xn, namely  ur+1,…,un.


• The function g is called a Legendre transform 
of f. 
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• It transform away the dependence upon 
xr+1,…,xn to a dependence upon ur+1,…,un.


• Newton	


• Leibniz


• Euler-Lagrange	 


• Hamilton 
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• It is apparent that this type of transformation 
allows one to introduce a natural function of T, 
V, and n, since T is simply the conjugate variable 
to S; so as to p to V.


• From the first and second law, we have 

	 		 E = E(S, V, n)

• We construct a natural function of T, V and n, by 

subtract from the E(S, V, n) the quantity 

	 S  ! (variable conjugate to S) = ST.

• Let     A(T, V, n) = E – TS  called the  Helmholtz 

free energy
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Legendre Transform

• Let  G(T, p, n) be the Gibbs free energy

	 G = E – TS – (–pV)

• And H(S, p, n) be the Enthalpy

	 H = E –  (–pV) = E + pV

• Therefore, 
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Maxwell Relations

• Armed with the auxiliary, many types of 
different measurements can be interrelated.


• Consider, 


•                                   implies we are viewing S 
as function of the natural function of T, V 
and n.   
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Maxwell Relations

• If df = adx + bdy, from calculus, 


• Recall

• Then we have


• and
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Example I

• Let

• then 
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( ) nV,v TST=C ∂∂ / 𝑑𝐸 = 𝑇𝑑𝑆 − 𝑝𝑑𝑉 + ∑𝑖
𝜇𝑖𝑑𝑛𝑖



Quiz X

• Derive an analogous form for (10 Mins) 


• Show that for a one component p-V-n system 
(10 Mins) 


• where v is the volume per mole.  [Hint: show that                            
, where s is the entropy per mole.
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Example II

• Let 


• Viewing S as a function of T, V and n

• We have
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Maxwell Relations

• Hence


• Note that


• So


• Therefore 
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Euler’s theorem

• From the 2nd law of thermodynamics,                  


• the internal energy E is extensive, it depends 
upon S and X, which are also extensive.


• Thus, E(S,X) is a first order homogeneous 
function of S and X.


( )XS,E=E

( ) ( )XS,λE=XλE



Euler’s theorem

• Therefore, from Euler’s theorem, Eq.5,


 

where X is a vector means system volume

• And work is, 
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Extensive Function

• This flow naturally as we gave earlier,


• That is, E = E(S,V, n1,…,nr)

 

• and Euler’s theorem yields,
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Extensive Function

• Its total differential is


• Therefore,
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This is the Gibbs-Duhem Equation



Extensive Function

• Recall the definition of Gibbs free energy

	 G = E – TS – (–pV)

• Apply Euler’s theorem gives,


• For one component system µ = G/n, Gibbs 
free energy per mole
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Quiz (exercise 1.14)

• Show that for a one component p-V-n system


• where v is the volume per mole.  [Hint: show 
that                            , where s is the entropy 
per mole.

TT v
pv

v
⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
=⎟

⎠

⎞
⎜
⎝

⎛
∂

∂µ

vdpsdTd +−=µ


