Thermodynamics

Chemical Engineering @ Tongji University Min Huang, PhD

Introduction

Every scientific discipline has its characteristic set of problems and systematic methods for obtaining their solution - that is, its paradigm.

The Structure of Scientific Revolutions Thomas S. Kuhn,

There are four steps in evolution, scientific discovery

Revolution, developing new paradigm Normal science, studies inside paradigm Anomalies Crisis

Chemical engineering started @MIT in 1888

The first paradigm was proposed by Arthur D. Little in 1915, based on the unifying concept of "unit operation"

The "old" traditional paradigm around 1950, including: thermodynamics and kinetics, transport phenomena, unit operations, reaction engineering, process design and control, and plant design and system engineering

Crisis-- explosion of new products and materials from the biotechnology industry, the electronics industry, or the high-performance materials industry "critically" dependent on structure and design at the molecular level for their usefulness

The "new" traditional paradigm started around 2000: make increasing use of computers, artificial intelligence, and expert systems in problem solving

Already 20 years old !

Organic Solar Cell / OLED

Wolfgang Btutting, et al.

MODELS AND METHODS

- **Monomers optimized using DFT, B3LYP, 6-311G++2p,2d**
- **Beads, Chain length and configurations**
	- **DPD beads representation of PEDOT and PSS**

PFI (Nafion) polymer

DPD simulation

- **Initial conditions**
- **DPD Simulation box of PEDOT:PSS:PFI=1:2.5:0.5 @ room temperature**

PFI structure configurations

• **PEDOT:PSS:PFI=1:2.5:1.0 @RT**

Mapping

Figure 1. Mapping results of PSS:PEDOT:PFI; a DPD, b CG, c Atomistic(top portion)

Mapping

Figure 2. Snapshots of PFI:PSS:PEDOT complex from DPD simulation mapping results.

PFI:PSS:PEDOT HOMO-LUMO

HOMO -5.35eV LUMO

Figure 5. Interactive energy [kcal/mol]of PSS:PEDOT=6:1 and perovskite crystal

Wolfgang Btutting, et al.

New problem arises: conductivity

So we ask siri what to do: Siri, how to increase conductivity ?

• **PSS:PEDOT:PFI, PSS:PEDOT:NiOx micro phase structures 2016** • **PSS:PEDOT:PFI, work function 2017** • **PSS:PEDOT:solvent, micro phase structures 2018** • **All agree well with the experiment results.**

• **In this contribution,**

predict PSS:PEDOT:Flemion micro structure to test Model-Based-Reasoning

Flemion polymer

DPD Results

DFT configuration optimization results

Why is this has anything to do with thermodynamics ?

- **Classical Molecular Dynamics: very small in size and time duration**
- **Mesoscale bridging microscopic view to scales in real life**
- **Dissipative particle dynamics (DPD)—Coarse grain + Flory-Huggins theory a branch of solution theory in thermodynamics**

$$
\left(\frac{\Delta G_{mix}}{RT}\right)\left(\frac{V_r}{V}\right) = \underbrace{\oint_A \ln \phi_A + \frac{\phi_B}{N_B} \ln \phi_B}_{\text{Interaction:}} + \underbrace{\chi_{AB} \phi_A \phi_B}_{\text{Interaction:}} \left(\frac{\chi_{AB}}{\text{non-bonding}} + \underbrace{\text{boundary}}_{\text{bonding}}
$$
\nEntropy of mix, ideal solution

\nExphalpy of mix Entropy of mix

- **Thermodynamics is neither engineering, nor physics, nor chemistry, nor biology.**
- **It is a tool used by all above and taken by all science and engineering students.**
- **Thermodynamics occupies the same place in sciences as logic in humanities.**

The origin

- ^l **The term "thermodynamics" was introduced by Lord Kelvin himself to direct attention to the dynamic nature of heat and to contrast this perspective with previous conceptions of heat as a type of Fluid.**
- ^l **When taken literally, thermodynamics implies a field concerned with the mechanical action produced by heat.**

the Science of Heat

- **In ancient west, Earth, Water, Air and Fire are the generally known and often quoted ancient elements of nature (Aristotle added Aether as the 5th, the quintessence (**精髓**))**
- **In China, we have** 土木火水金**.**
- **By the end of the 18th century, French rich aristocrat chemist Lavoisier advocated a theory explaining that the phenomena involving the transfer of heat are the result of a weightless fluid substance, he called "caloric."**
- **This "caloric," as Lavoisier assumed, permeated the gaps between atoms of a solid causing thermal expansion and whose loss through the surface could explain Newtonian cooling.**
- **Count (**伯爵**) Rumford found that heat can be produced by the boring of cannons and one can generate "unlimited amount" of heat simply by keeping boring the cannon—mechanical to heat**
- **Count Rumford's opinion eventually prevailed, but not after Lavoisier being severed by a Guillotine.**

Bulk vs. individual particles

Newtonian's physics deals with individual point mass, position and momentum

Thermodynamics deals with bulk properties, P,V; T,S

In probability and statistics, we learned individual events may occur in sequential or parallel fashion

Events independently more than 20, maybe described using normal distribution

When events piling up, central value theorem tells us, the distribution becomes Gaussian.

Following steepest decent, expand about its maximum value, which occurs at <E>

$$
\ln P(E) = \ln P(\langle E \rangle) + \delta E \frac{\partial \ln P(E)}{\partial E}\bigg|_{\langle E \rangle} + \frac{1}{2} (\delta E)^2 \frac{\partial^2 \ln P(E)}{\partial E^2}\bigg|_{\langle E \rangle} + \cdots
$$

where the second term equals 0, since has a maximum at <E>; for the third term let,

$$
\frac{\partial^2 \ln P(E)}{\partial E^2}\Big|_{\langle E \rangle} = \frac{\partial^2 \ln (\ln \Omega - \beta E)}{\partial E^2}\Big|_{\langle E \rangle} = \frac{\partial^2 \ln \ln \Omega}{\partial E^2}\Big|_{\langle E \rangle}
$$
\nRefer to my PPT in
Teaching--> Grad --> Statistical Mechanics

\n
$$
P(E_1, E_2) = \frac{\int_{E_1}^{E_2} \Omega(E^*) dE^*}{\int_{E_0}^{\infty} \Omega(E^*) dE^*}
$$

Substitute <E> as E,

$$
\frac{\partial^2 \ln P(E)}{\partial E^2}\Big|_{\langle E \rangle} = \frac{\partial}{\partial \langle E \rangle} \left(\frac{\partial \ln \ln \Omega(\langle E \rangle)}{\partial \langle E \rangle} \right) = \frac{\partial \beta}{\partial \langle E \rangle}
$$

$$
= -\frac{1}{k_B T^2} \frac{\partial T}{\partial \langle E \rangle} = -\frac{1}{k_B T^2 C V}
$$

$$
\left\{ \ln P(E) - \ln P(\langle E \rangle) \right\} = \ln \frac{P(E)}{P(\langle E \rangle)} = -\frac{1}{2} (\delta E)^2 \frac{1}{k_B T^2 C_V} \left[\delta E = E - \langle E \rangle \right]
$$

For
$$
\delta E = 10^{-6} \langle E \rangle
$$
, $N = 10^{21}$, using $\langle E \rangle = 3 / 2M_{B}T$, $C_V = 3 / 2M_{B}$

$$
\frac{-\frac{1}{2}10^{-12}\langle E \rangle^2}{\frac{-\frac{1}{2}10^{-12}\langle E \rangle^2}{k_B T^2 C_V}} = e^{-\frac{\frac{1}{2}10^{-12}\cdot\frac{9}{4}(Nk_B T)^2}{k_B T^2 \frac{3}{2}Nk_B}} = e^{-10^{-12}\cdot\frac{3}{4}N} \approx e^{-10^9\cdot\frac{3}{4}}
$$

$$
P(E) / P(\langle E \rangle) = e^{-10^9}
$$

the probability of finding particles outside <E> decreases drastically as N increases which allows the states in thermodynamics be defined with very few variables, while the fluctuations at microscopic level still exist.

Statistical mechanics

Suppose we bring two isolated systems with fixed volumes into thermal contact, which will allow flow of energy The number of accessible between them.

Thermal contact U_2 N₂ $U_1 N_1$ $\Omega_1(U)$ $\Omega_{2}(U_{2})$

so the total energy of the combined system is $U =$ $U_1 + U_2$, and there are N $=N_1 + N_2$ particles.

microstates in each system are $\Omega_1(U_1)$ **and** Ω ₂ $(U$ ₂) respectively

so the total mulitplicity function for the system, $\Omega(N, U, U_1) = \Omega_1(U_1)\Omega_2(U_2),$

the most probable values of U_1 and U_2 are those which maximize $\Omega(N, U, U_1)$.

use the central limit theorem to see that Ω_1 and Ω_2 will have Gaussian forms, which will give

$$
\Omega(N, U, U_1) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left\{-\left[\frac{(U_1 - \hat{U}_1)}{2\sigma_1^2} + \frac{(U - U_1 - \hat{U}_2)^2}{2\sigma_2^2}\right]\right\}
$$

 \hat{U}_1 and $\hat{U}_2 = U - \hat{U}_1$

the most probable values of U_1 and U_2 maximize $\Omega(N, U, U_1)$

$$
\frac{\partial}{\partial U_1} \Omega(N, U, U_1) \bigg|_{U_1 = \hat{U}_1} = 0
$$
\n
$$
\frac{\partial}{\partial U_1} [\Omega_1(U_1) \Omega_2(U_2)] \bigg|_{U_1 = \hat{U}_1} = 0
$$
\n
$$
\left(\frac{\partial \Omega_1(U_1)}{\partial U_1} \right)_{U_1 = \hat{U}_1} \Omega_2(\hat{U}_2) + \Omega_1(\hat{U}_1) \left(\frac{\partial \Omega_2(U_2)}{\partial U_1} \right)_{U_2 = \hat{U}_2} \frac{\partial U_2}{\partial U_1} = 0
$$

And
$$
\frac{\partial U_2}{\partial U_1} = -1
$$

$$
\frac{1}{\Omega_1(\hat{U}_1)} \left(\frac{\partial \Omega_1(U_1)}{\partial U_1} \right)_{U_1 = \hat{U}_1} - \frac{1}{\Omega_2(\hat{U}_2)} \left(\frac{\partial \Omega_2(U_2)}{\partial U_2} \right)_{U_2 = \hat{U}_2} = 0
$$
Or
$$
\left(\frac{\partial \ln \Omega_1(U_1)}{\partial U_1} \right)_{U_1 = \hat{U}_1} - \left(\frac{\partial \ln \Omega_2(U_2)}{\partial U_2} \right)_{U_2 = \hat{U}_2} = 0
$$

At equilibrium

$$
\left(\frac{\partial \ln \Omega(U)}{\partial U}\right)_{U=\hat{U}} = \beta
$$

Since at equilibrium, two systems in contact with each other is reached at a temperature common to both, therefore,

Define temperature as
$$
\frac{1}{T} = \frac{\partial S}{\partial U}\Big|_{N,V}
$$

We have,

$$
\left(\frac{\partial \ln \Omega(U)}{\partial U}\right)_{U=\hat{U}} = \frac{1}{k_B T}
$$

The entropy

$$
S = k_B \ln \Omega
$$