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Recap Mixture/solution

• From postulate of 

internal energy to 

the definition of heat 

and the First Law.

• From the Newton’s 

Second Law

• In the reversible 

case plus
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Recap Mixture/solution

• From postulate of 

entropy to the 

definition of 

temperature 

• the Second Law

0)/(T

0)/( 





X

X

SE

SE

0)(

)/()/1(







adiabatic
S

XdfTdSdE

XdTfdETdS



Recap Mixture/solution

• Combine the First and 

Second Law,

• Euler’s theorem lead to

Gibbs-Duhem

Equation

• From the Legendre 

transformation lead to

Helmholtz free energy

• And Gibbs free energy
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Recap Mixture/solution

• From the definition 

of chemical 

potential,

• we introduced 

partial molar 

property 

• This allow the 

calculation of 

mixture properties 

at a small deviation 
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Recap Mixture/solution

• A partial molar property (other than 

volume) of a constituent species in an ideal-

gas mixture is equal to the corresponding 

molar property of the species as a pure ideal 

gas at the mixture temperature but at a 

pressure equal to its partial pressure in the 

mixture.

• This leads to
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Recap Mixture/solution

• Gibbs free energy of a multicomponent mixture

• Chemical Potential

• Partial Molar Property

• Partial Pressure of Ideal-Gas

• Ideal-Gas Mixtures

– enthalpy of an ideal gas

– entropy of an ideal gas

• Gibbs energy of an ideal-gas mixture Gig = Hig –
TSig, 



Nonideal gas mixtrures



Fugacity and Fugacity Coefficient

• For for pure species i, dG = −SdT +Vdp

• At constant T, in the ideal-gas state, 

• Integration gives,

where Gi (T) is the integration constant at 

constant T

• Ideal gas mixture, recall
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Fugacity and Fugacity Coefficient

• For real gas (fluid), write an analogous

• in which pressure p is replaced by a new 

property fi, with units of pressure. This 

equation provides a partial definition of fi, 

the fugacity of pure species i.
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Fugacity and Fugacity Coefficient

• At same T and p

where             is the residual Gibbs energy

• The dimensionless ratio fi / P is another new 

property, the fugacity coefficient, given the 

symbol fi .
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Fugacity and Fugacity Coefficient

• Therefore,

• The definition of fugacity is completed by 

setting the ideal-gas-state fugacity of pure 

species i equal to its pressure p.
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• The definition of the fugacity of a species 
in solution is parallel to the definition of 
the pure species fugacity, Recall 

• So we have

• where      is the fugacity of species i in 
solution, replacing the partial pressure 

yi p.
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Residual Property

• Define residual property as

• where M is the molar (or unit-mass) value of 

a thermodynamic property and Mig is the 

value that the property would have for an 

ideal gas of the same composition at the 

same T and P.
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Residual Property

• Multiply n on both side,

• Differentiation with respect to ni at constant 

T, P, and nj gives:
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Residual Property

• each term has the form of a partial molar 

property, therefore,

• Written for the residual Gibbs energy,

• And for same T and P
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Residual Property

• Using identity

• then

• Where

• This is the fugacity coefficient of species i in 
solution
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Residual Property

• For an ideal gas, 

is necessarily zero; 

• therefore

1ˆ

0ˆln





ig

i

R

i

i

RTG

f

f

ig

ii

R
GGG i 

pyf
i

ig

i

ˆ



The Ideal Solution



The Ideal Solution

• Recall Gibbs energy of an ideal-gas mixture

• We therefore define an ideal solution as one 

for which:

where id means ideal solution
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The Ideal Solution

• All other thermodynamic properties for an 

ideal solution follow from this definition

ii

id

i

i

p

i

xp

id

iid

i

xRSS

xR
T

G

T

G
S

ln

ln

,










































i

id

i

T

i

xT

id

iid

i

VV

p

G

p

G
V









































,



The Ideal Solution

• Since

• Therefore

• From definition of partial molar property
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The Ideal Solution
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The Lewis/Randall Rule

• Recall 

• so

• fugacity of a species in an ideal solution
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Excess Properties

• If M represents the molar (or unit-mass) 

value of any extensive thermodynamic 

property, then an excess property ME is 

defined as

• By definition, 
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Excess Properties

• Since an ideal-gas mixture is an ideal solution

of ideal gases,

• This leads to

• Note that excess properties have no meaning 

for pure species, whereas residual properties 

exist for pure species as well as for mixtures.

• partial excess property
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The Excess Gibbs Energy and the 

Activity Coefficient

• Since

• And

• Therefore 
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• Left side is the partial excess  Gibbs energy

• Right side is the dimensionless ratio activity 

coefficient of species i in solution, symbol gi

• or
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Activity and activity coefficient

• Recall the define of an ideal solution:

• We define

• Where      is the reference or standard state 

chemical potential. The quantity, ai, is 

called the "activity" of component i.
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Activity and activity coefficient

• Thus, for an ideal gas 

mixture,

• for an nonideal gas 

mixture,

• for an ideal solution 

mixture,
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Thermodynamic Consistency

• For Binary experimental data

• or
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Thermodynamic Consistency
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Thermodynamic Consistency

• If a data set is reduced so as to make the 
residuals in GE/RT scatter about zero,

• This is the direct measure of deviations 
from the Gibbs-Duhem equation. The 
extent to which a data set departs from 
consistency is measured by the degree to 
which these residuals fail to scatter about 
zero
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Models for the excess 

Gibbs Energy

• GE/RT is a function of T, P, and composition, 

but for liquids at low to moderate pressures 

it is a very weak function of P. Therefore 

the pressure dependence of activity 

coefficients is usually neglected.



Calculated Phase Diagram

(CALPHAD) 

Where                            are constants to be identified

Redlich-Kister formalism
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Xylene Isomers Solid-Liquid 

Binary Phase Diagram

mX-pX

oX-pX 

oX-mX

o,p,m  邻对间



Xylene Isomers Solid-Liquid 

Ternary Phase Diagram



Calculated Phase Diagram (CALPHAD)

Liquid Solid
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