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Introduction

• Why we interested in the second law ?

• the “arrow of time”

– It is vividly recognized by consciousness

– It is equally insisted on by our reasoning 

faculty (capability to reason)

– Increase in randomness in the study of 

organization a number of individuals



Hamilton’s Equation

• For a single particle



Hamilton’s Equations

• Energy is a constant of the motion

• At microscopic level no sense of 

“arrow of time”, events can equally unfold  

forward or backward.



• It seams increase in randomness can equally 

possible forward or backward.

• This lead us to the big band. 

• At the beginning of the time, everything is 

highly ordered, with the expansion, 

randomness set in.

• Before the “final” state of equilibrium, 

randomness increases with time.



• With the big ban theory, Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric, we may 
introduce the Hubble parameter,

• where a is a time dependent dimensionless 
scale factor.

• Using pseudo-Newtonian representation

• where U(x) is the potential energy

(t)
dt

(t)d

(t)
a

a

H

qdt

d

q

)qU(

dt

pd 2

2







a

a



• The i-th component of the observed velocities is 
then,

• Obviously the last term breaks the time 
symmetry, when (t-t), 

• metric expansion of space gives a small 
correction to the Hamiltonian time evolution of 
the system. 
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• For times much shorter than 1/l, (1/l is the 
Lyapunov time, the characteristic timescale on 
which a dynamical system is chaotic), this small 
correction to the Hamiltonian time evolution 
result in the entropy difference is,

• Then  

• This difference is always positive. This means 
that the direction of the deviation from the 
Hamiltonian path due to FLRW expansion is 
always towards an entropy increase.
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• Postulate: There is an extensive function of 

state, S(E,X), which is a monotonically 

increasing function of E, and if state B is 

adiabatically accessible from state A, then

– Notice that if this state B was reversibly 

accessible from state A, this postulate also 

implies that 

– If A and B are adiabatically and reversibly 

accessible,

Second Law of Thermodynamics
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• The extensive function of state, S(E, X) 

is called the entropy.

• For an adiabatic process that is 

reversible, both dS and            are zero

Second Law of Thermodynamics
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Second Law of Thermodynamics

• Since, all displacements connecting the 

manifold of equilibrium states

• Notice all quantities involved in this 

equation are functions of state, 

therefore, it holds for nonadiabatic as 

well as adiabatic processes.
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• In the postulate, it states that S is a 

monotonically increasing function of E;

• Note that both E and S are extensive, 

the temperature is intensive, that is, 

independent of the size of the system. 

The definition of temperature

Second Law of Thermodynamics
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Second Law of Thermodynamics

• Substitute back,

• Therefore,

• These equations constitute the mathematical 

statement of the second law
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Variational Statement 

of Second Law

• Internal constraints: are constraints 

that couple to extensive variables but 

not alter the total value of those 

extensive variables (e.g. partition)



Variational Statement 

of Second Law

• The system is initially at equilibrium S = 

S(E, X)

• Then, by applying an internal constraint, 

the system is reversibly brought to a 

constrained equilibrium with the same 

E and X, but with entropy S’ = S(E, X;

internal constraint)



Variational Statement 

of Second Law



Variational Statement 

of Second Law

• The states on the E-X plane are the manifold 

of equilibrium states in the absence of the 

internal constraint

• The application of the internal constraint lifts 

the system off this manifold.  It will require 

work to do this

• and the requirement that there is no change 

in energy for the process means that there 

must also have been a flow of heat



Variational Statement 

of Second Law

• After attaining and while maintaining 
this constrained state, the system will 
be adiabatically insulated. 

• Then, the internal constraint is 
suddenly shut off

• The system will relax naturally at 
constant E and X back to the initial 
state with entropy S



Variational Statement 

of Second Law

• According to the second law, the 

entropy change is positive  S − S’ > 0,

• Or S(E, X) > S(E, X; internal 

constraint)—the equilibrium state is the 

state at which S(E, X; internal 

constraint) has its global maximum



Variational Statement 

of Second Law

The Energy minimum principle:

• Repartitioning the system



Variational Statement 

of Second Law
The entropy Maximum requires that

after repartition before

• Entropy is extensive, E is an amount of 
energy removed from subsystem 1 and 
placed into subsystem 2.   

• Since S is a monotonically increasing 
function of E, (increases in E will led to 
increase in S, and vice versa, monotonic)

• Therefore
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Variational Statement 

of Second Law

• When E ≠0, and allow

• To raise left hand from less to equal, energy 
must be added

• That is, apply internal constraints at constant 
S and X, will necessarily raise the total 
energy of the system

• Therefore, the equilibrium state E(S, X) is the 
state at which E(S, X; internal constraint) has 
its global minimum
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Variational Statement 

of Second Law

• Scenario I: at equilibrium

• How are T(1) and T(2) related?



Variational Statement 

of Second Law

• Consider a small displacement about 

equilibrium due to an internal 

constraint,

(entropy maximum)

• Since E = E(1) + E(2) is constant during 

the displacement (see diagram), 

d E(1) =  −d E(2)

• Since S is extensive, S = S(1) + S(2)

  0 , XESd



Variational Statement 

of Second Law

• Thus

For all dE, therefore, T(1) = T(2)
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Variational Statement 

of Second Law

• Scenario II: initially not at equilibrium, 

then eventually reach equilibrium

• From the second law,

• Assuming differences are small
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Variational Statement 

of Second Law

• Then

• Therefore,

– T(1) > T(2)
 E(1) < 0

– T(1) < T(2)
 E(1) > 0

– That is energy flow is from the hot body to 
cold body
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