Lead-Lag Compensation

"lead" and "lag"

- Adding a pole to the system changes the phase by -90 deg and adding a zero changes the phase by +90 deg.
- Generally the purpose of the Lead-Lag compensator is to create a controller which has an overall magnitude of approximately 1.
- It is used for phase compensation rather than magnitude.

Lead Compensator

- Assume the following lead compensator is :

- where $G(s)=\frac{4}{s(s+2)}$
- It is desired to design a compensator for the system so that the static velocity error constant K_{v} is $20 \mathrm{sec}^{-1}$, the phase margin is at least 50°, and the gain margin is at least $\mathbf{1 0} \mathbf{d B}$.
- Define $K_{c} \alpha=K$
- Then

$$
G_{c}(s)=K \frac{T s+1}{\alpha T s+1}
$$

- The open-loop transfer function of the system is

$$
G_{c}(s) G(s)=K \frac{T s+1}{\alpha T s+1} G(s)=\frac{T s+1}{\alpha T s+1} G_{1}(s)
$$

- and $G_{1}(s)=K G(s)=\frac{4 K}{s(s+2)}$
- therefore, $K_{v}=\lim _{s \rightarrow 0} s G_{c}(s) G(s)=\lim _{s \rightarrow 0} s \frac{T s+1}{\alpha T s+1} G_{1}(s)$

$$
=\lim _{s \rightarrow 0} \frac{s 4 K}{s(s+2)}=2 K=20
$$

- Next plot the bode diagram of

$$
G_{1}(j \omega)=K G(j \omega)=\frac{40}{j \omega(j \omega+2)}=\frac{20}{j \omega(0.5 j \omega+1)}
$$

- The transfer function has 3 components:
- A constant of 20-which is equal to 26.0 dB . The phase is constant at 0 degrees.
- A pole at $\mathrm{s}=0$-break at $1 \mathrm{rad} / \mathrm{sec}$, a pure integral with slope -20dB/decade
- The phase is 0 degrees up to $1 / 10$ the break frequency ($0.1 \mathrm{rad} / \mathrm{sec}$) then drops linearly down to $\mathbf{- 9 0}$ degrees at 10 times the break frequency ($10 \mathrm{rad} / \mathrm{sec}$).
- A pole at $s=-2 — b r e a k$ at $2 \mathrm{rad} / \mathrm{sec}$, with slope of (-20)+(-20)dB/decade
- The phase is 0 degrees up to $1 / 10$ the break frequency ($0.2 \mathrm{rad} / \mathrm{sec}$) then drops linearly down to $\mathbf{- 1 8 0}$ degrees at 10 times the break frequency ($20 \mathrm{rad} / \mathrm{sec}$).

$$
\begin{aligned}
& G_{1}(j \omega)=\overline{K G(j \omega)} \\
& =\frac{40}{j \omega(j \omega+2)} \\
& =\frac{20}{j \omega(0.5 j \omega+1)} \\
& \mathrm{dB}
\end{aligned}
$$

- The phase margin of the system is 17° and the gain margin is $+\infty$ dB
- Phase margin of $17^{\circ} \mathrm{implies}$ that the system is quite oscillatory.
- The specification calls for a phase margin of at least 50°.
- A lead compensator is needed for this purpose.

Polar Plot

- Consider the Nyquist plots of the First order factor $(1+s)^{-1} \rightarrow(1+j \omega)^{-1}$.
- The sinusoidal transfer function

$$
\begin{aligned}
& G(j \omega)=\frac{1}{1+j \omega T}=\frac{1}{1+j \omega T} \frac{1-j \omega T}{1-j \omega T} \\
& =\frac{1}{1+\omega^{2} T^{2}}+j \frac{-\omega T}{1+\omega^{2} T^{2}} \\
& =\frac{1}{\sqrt{1+\omega^{2} T^{2}}}(-\arctan (\omega T))
\end{aligned}
$$

- Polar plot of

$$
\begin{aligned}
& \text { ar plot ot } \\
& G_{c}(s)=K_{c} \alpha \frac{T s+1}{\alpha T s+1}=K_{c} \frac{s+\frac{1}{T}}{s+\frac{1}{\alpha T}} \quad 0<\alpha<1
\end{aligned}
$$

- With $K_{c}=1$, for a given value α, the angle between the positive real axis and the tangent line drawn from the origin to the semicircle gives the maximum phase lead angle.

- Phase angle at $\omega=\omega_{\mathrm{m}}$ is φ_{m}, where

$$
\sin \varphi_{m}=\frac{\frac{1-\alpha}{2}}{\frac{1+\alpha}{2}}=\frac{1-\alpha}{1+\alpha}
$$

- and ω_{m} is the geometric mean of two corner frequencies,

$$
\begin{aligned}
& \log \omega_{m}=\frac{1}{2}\left(\log \frac{1}{T}+\log \frac{1}{\alpha T}\right) \\
& \omega_{m}=\frac{1}{\sqrt{\alpha} T}
\end{aligned}
$$

Bode Diagram of Lead Compensator

- To have a phase margin of at least 50°, phase lead of 33° is needed
- Notice that the addition of a lead compensator, will cause the gain crossover frequency shift to the right.
- We must offset the increased phase lag of $\mathbf{G}_{1}(j \omega)$ due to this increase.
- Assume the $\varphi_{\mathrm{m}}=\mathbf{3 8}^{\mathbf{0}}$, therefore $5^{\mathbf{0}}$ is used for the offset
- Since $\sin \varphi_{m}=\frac{1-\alpha}{1+\alpha}=\sin 38^{\circ}$
- Therefore, $\alpha=0.24$.

$$
\begin{aligned}
& \text { - Next } \\
& \left|G_{c}(j \omega)\right|=\left|\frac{1+j \omega T}{1+j \omega \alpha T}\right|_{\omega=\frac{1}{\sqrt{\alpha} T}}=\left|\frac{1+j \frac{1}{\sqrt{\alpha}}}{1+j \alpha \frac{1}{\sqrt{\alpha}}}\right|=\frac{1}{\sqrt{\alpha}}=6.2 d B
\end{aligned}
$$

- Let $\left|G_{1}(j \omega)\right|=-6.2 d B$, therefore $\omega_{\mathrm{c}}=9 \mathrm{rad} / \mathrm{sec}$.

crossover

- Therefore, $\frac{1}{T}=\sqrt{\alpha} \omega_{c}=4.41$

$$
\frac{1}{\alpha T}=\frac{\omega_{c}}{\sqrt{\alpha}}=18.4
$$

- The lead compensator thus determined is

$$
G_{c}=K_{c} \frac{s+4.41}{s+18.4}=K_{c} \alpha \frac{0.227 s+1}{0.054 s+1}
$$

- where

$$
K_{c}=\frac{K}{\alpha}=\frac{10}{0.24}=41.7
$$

- Thus, the transfer function of the compensator is

$$
G_{c}=41.7 \frac{s+4.41}{s+18.4}=10 \frac{0.227 s+1}{0.054 s+1}
$$

- and

$$
\begin{aligned}
& \frac{G_{c}(s)}{K} G_{1}(s)=\frac{G_{c}(s)}{10} 10 G(s)=G_{c}(s) G(s) \\
& G_{c}(s) G(s)=41.7 \frac{(s+4.41)}{(s+18.4)} \frac{4}{s(s+2)} \\
& G_{c}(s) G(s)=10 \frac{(.227 s+1)}{(0.054 s+1)} \frac{2}{s(0.5 s+1)}
\end{aligned}
$$

Bode Diagram of

 the Compensated System

Steady state error of cascade compensator

$$
\begin{aligned}
G_{c}(s) & =\frac{1+\alpha T s}{1+T_{s}} \approx 1+\alpha T s \\
G(s) & =\frac{\omega_{n}^{2}}{s\left(s+2 \varsigma \omega_{n}\right)} \\
\frac{C(s)}{R(s))} & =\frac{G_{c} G}{1+G_{c} G} \\
& =\frac{\omega_{n}^{2}+\alpha T \omega_{n}^{2} s}{s^{2}+\left(2 \xi \omega_{n}+\alpha T \omega_{n}^{2} T s\right)+\omega_{n}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \zeta \omega_{n}+\alpha T \omega_{n}^{2}=2 \zeta_{\text {eq }} \omega_{n} \\
& \zeta_{e q}=\zeta+\frac{\alpha T \omega_{n}}{2} \\
& R(s)=1 / s^{2}, \text { unit ramp input } \\
& E(s)=\frac{1}{S} \frac{\left(s+2 \zeta \omega_{n}\right)(1+T s)}{s\left(s+2 \zeta \omega_{n}\right)\left(1+T_{S}\right)+\omega_{n}^{2}(1+\alpha T s)} \\
& e_{s s(\text { ranp input })}=\lim _{s \rightarrow 0} s E(s)=\frac{2 \zeta}{\omega_{n}}
\end{aligned}
$$

Minor- loop

Feedback Compensation

$$
\begin{aligned}
\frac{C(S)}{R(s)} & =\frac{\omega_{n}^{2}}{s^{2}+\left(2 \xi \omega_{n}+\omega_{n}^{2} b s\right)+\omega_{n}^{2}} \\
2 \zeta \omega_{n} & +\omega_{n}^{2} b=2 \zeta_{e q} \omega_{n} \\
\zeta_{e q} & =\zeta+\frac{\omega_{n} b}{2} \\
R(s) & =1 / s^{2}, \quad \text { unit ramp input } \\
E(s) & =\frac{1}{S}\left(\frac{s+2 \zeta \omega_{n}+b \omega_{n}^{2}}{S\left(S+2 \zeta \omega_{n}+b \omega_{n}^{2}\right)+\omega_{n}^{2}}\right) \\
e_{\text {ss(ramp input })} & =\lim _{s \rightarrow 0} s E(s)=\frac{2 \zeta \omega_{n}+b \omega_{n}^{2}}{\omega_{n}^{2}}=\frac{2 \zeta}{\omega_{n}}+b
\end{aligned}
$$

Lag Compensator

- Assume the following lag compensator is :

$$
G_{c}(s)=K_{c} \beta \frac{T s+1}{\beta T s+1}=K_{c} \frac{s+\frac{1}{T}}{s+\frac{1}{\beta T}} \quad \beta>1
$$

Lag Compensator

- the polar plot is given as:

$$
G_{c}(s)=K_{c} \beta \frac{T s+1}{\beta T s+1}, \quad \text { assume } \quad K_{c}=1, \beta=10
$$

- The open-loop transfer function of the system is

$$
G_{c}(s) G(s)=\frac{T s+1}{\beta T s+1} K G(s)=\frac{T s+1}{\beta T s+1} G_{1}(s)
$$

- Define $K_{c} \beta=K, \quad G(s)=\frac{1}{s(s+1)(0.5 s+1)}$
- It is desired to compensate the system so that the static velocity error constant K_{v} is $5 \mathbf{~ s e c}^{-1}$, the phase margin is at least $\mathbf{4 0}^{\boldsymbol{\circ}}$, gain margin is at least 10 dB .
- To meet the requirement,

$$
K_{v}=\lim _{s \rightarrow 0} s G_{c}(s) G(s)=\lim _{s \rightarrow 0} s \frac{T s+1}{\beta T s+1} G_{1}(s)
$$

- Therefore, $K_{v}=\lim _{s \rightarrow 0} \frac{s K}{s(s+1)(0.5 s+1)}=K=5$
- Next plot the Bode Diagram for

$$
G_{1}(j \omega)=K G(j \omega)=\frac{5}{j \omega(j \omega+1)(0.5 j \omega+1)}
$$

- The phase margin is found to be -20°, therefore unstable.
- Chose the corner frequency $\omega=1 / \mathrm{T}$ (which corresponds to the zero of the lag compensator) to be $0.1 \mathrm{rad} / \mathrm{sec}$.
- The addition of a log compensator will modify the phase curve of the Bode Diagram, we must allow 5^{0} to 12° to compensate the this shift.
- The requirement is $\mathbf{4 0}, \mathbf{4 0}^{\circ}+\mathbf{1 2}^{\circ}=52^{\circ}$, therefore the phase angle is -128° at about $\omega=0.5 \mathrm{rad} / \mathrm{sec}$.
- To bring the magnitude curve down to 0 dB at this new gain crossover frequency, the lag compensator must give the necessary attenuation, $\mathbf{- 2 0} \mathbf{~ d B}$ at this point ($\omega=0.5 \mathrm{rad} / \mathrm{sec}$).
- Since $A R=\left|G_{1}(j \omega) G_{2}(j \omega) \cdots\right|=\left|G_{1}(j \omega)\right|\left|G_{2}(j \omega)\right| \cdots$
- and $K_{c} \beta=K$, therefore, to cancel out 20 dB of G_{1} at ($\omega=0.5 \mathrm{rad} / \mathrm{sec}$), let

$$
\begin{aligned}
& 20 \log \frac{1}{\beta}=-20 \\
& \therefore \beta=10
\end{aligned}
$$

- The other corner frequency $\omega=1 /(\beta T)$ is therefore determined as $0.01 \mathrm{rad} / \mathrm{sec}$.
- Thus the transfer function of the lag compensator is,

$$
G_{c}(s)=K_{c}(10) \frac{10 s+1}{100 s+1}=K_{c} \frac{s+\frac{1}{10}}{s+\frac{1}{100}}
$$

- Since the gain K was determined to be 5 and β was determined to be 10 ,
- $K_{c} \beta=K=5, K_{c}=0.5$
- The open-loop transfer function of the compensated system is therefore,

$$
G_{c}(s) G(s)=\frac{5(10 s+1)}{s(100 s+1)(s+1)(0.5 s+1)}
$$

- The phase margin is about 40°, gain margin is about 11dB

Lead-Lag

- Design a lag-lead compensator such that the static velocity error constant K_{v} is $50 \mathrm{sec}^{-1}$ and the damping ratio ζ of the dominant closed loop poles is 0.5 . (Choose the zero of the lead portion of the lag-lead compensator to cancel the pole at $s=-1$ of the plant.) Determine all closed-loop poles of the compensated system.

- Choose,
$G_{c}(s)=K_{C}\left(\frac{s+\frac{1}{T_{1}}}{s+\frac{\beta}{T_{1}}}\left(\frac{s+\frac{1}{T_{2}}}{s+\frac{1}{\beta T_{2}}}\right)=K_{C} \frac{\left(T_{1} s+1\right)\left(T_{2} s+1\right)}{\left(\frac{T_{1}}{\beta} s+1\right)\left(\beta T_{2} s+1\right)}\right.$
- then

$$
\begin{aligned}
K_{v} & =\lim _{s \rightarrow 0} s G_{c}(s) G(s) \\
& =\lim _{s \rightarrow 0} s K_{C} \frac{\left(T_{1} s+1\right)\left(T_{2} s+1\right)}{\left(\frac{T_{1}}{\beta} s+1\right)\left(\beta T_{2} s+1\right)} \frac{1}{s(s+1)(s+5)} \\
& =\frac{K_{C}}{5}
\end{aligned}
$$

- K_{v} is $50 \mathrm{sec}^{-1}, \mathrm{~K}_{\mathrm{C}}=250$.
- Let $T_{1}=1$ so that ($s+1 / T_{1}$) will cancel the ($s+1$) term of the plant,
- The lead portion then becomes, $(\mathbf{s}+1) /(\mathrm{s}+\beta)$.
- The lag portion,

$$
\left|\frac{s_{1}+\frac{1}{T_{2}}}{S_{1}+\frac{1}{\beta T_{2}}}\right| \cong 1, \quad-5^{\circ}</ \frac{S_{1}+\frac{1}{T_{2}}}{S_{1}+\frac{1}{\beta T_{2}}}<0^{\circ}
$$

- $s=s_{1}$ is one of the dominant closed-loop poles.
- Noting these requirements for the lag portion of the compensator, at $s=s_{1}$, the open-loop transfer function becomes.

$$
\begin{aligned}
G_{c}\left(s_{1}\right) G\left(S_{1}\right) & =K_{C}\left(\frac{s_{1}+1}{s_{1}+\beta}\right) \frac{1}{S_{1}\left(S_{1}+1\right)\left(s_{1}+5\right)} \\
& =K_{C} \frac{1}{S_{1}\left(s_{1}+1\right)\left(S_{1}+5\right)}
\end{aligned}
$$

- Then at $s=s_{1}$, the following magnitude and angle conditions must be satisfied,

$$
\left|K_{C} \frac{1}{S_{1}\left(S_{1}+1\right)\left(s_{1}+5\right)}\right|=1
$$

- and

$$
/ K_{C} \frac{1}{S_{1}\left(S_{1}+1\right)\left(S_{1}+5\right)}= \pm 180^{\circ}(2 k+1)
$$

- No β and s_{1} are still unknown.
- Given ζ of the dominant closed-loop poles is specified as 0.5 , Let

$$
s_{1}=-x+j \sqrt{3} x
$$

- Substitute into the magnitude condition,

$$
\left|\frac{K_{C}=250}{\mid s_{1}\left(s_{1}+1\right)\left(s_{1}+5\right)}\right|=1
$$

- Simplify we have,

$$
x \sqrt{(\beta-x)^{2}+3 x^{2}} \sqrt{(5-x)^{2}+3 x^{2}}=125
$$

$$
\begin{aligned}
& \frac{K_{C}=250}{(-x+j \sqrt{3} x)(-x+\beta+j \sqrt{3} x)(-x+5+j \sqrt{3} x)} \\
& =-120^{\circ}-\tan ^{-1}\left(\frac{\sqrt{3} x}{-x+\beta}\right)-\tan ^{-1}\left(\frac{\sqrt{3} x}{-x+\beta}\right) \\
& =-180^{\circ} \\
& \tan ^{-1}\left(\frac{\sqrt{3} x}{-x+\beta}\right)-\tan ^{-1}\left(\frac{\sqrt{3} x}{-x+\beta}\right)=60^{\circ}
\end{aligned}
$$

- We arrive at

$$
\begin{aligned}
& \beta=16.025, \quad x=1.9054 \\
& S_{1}=-x+j \sqrt{3} x=-1.9054+j 3.3002
\end{aligned}
$$

- Noting that the pole and zero of the lag portion of the compensator must be located near the origin, we may choose
- That is

$$
\frac{1}{\beta T_{2}}=0.01
$$

$$
\frac{1}{T_{2}}=0.16025
$$

- Substitute, $\mathrm{T}_{2}=6.25$,

$$
\left|\frac{S_{1}+\frac{1}{T_{2}}}{S_{1}+\frac{1}{0 \infty}}\right|=\left|\frac{-1.9054+j 3.3002+0.16025}{-1.9054+j 3.3002+0.01}\right|=0.98 \cong 1
$$

- and

$$
\begin{gathered}
/ \frac{s_{1}+\frac{1}{T_{2}}}{s_{1}+\frac{1}{\beta T_{2}}}=/ \frac{-1.9054+j 3.3002+0.16025}{-1.9054+j 3.3002+0.01} \\
=\tan ^{-1}\left(\frac{3.3002}{-1.74515}\right)-\tan ^{-1}\left(\frac{3.3002}{-1.89054}\right)=-1.937^{\circ} \\
G_{c}(s)=250\left(\frac{s+1}{s+16.025}\right)\left(\frac{s+0.16025}{s+0.01}\right)
\end{gathered}
$$

$$
\frac{C(s)}{R(s)}=\frac{250(s+0.16025)}{s(s+0.01)(s+5)+250(s+16.025)}
$$

- closed-loop poles are at

$$
\begin{aligned}
& s=-1.8308 \pm j 3.2359 \\
& s=-0.1684 \\
& s=-17.205
\end{aligned}
$$

Exercise

- Consider the system shown in Figure. Design a compensator such that the closed-loop system will satisfy the requirements that the static velocity error constant $=20 \mathrm{sec}^{-1}$, phase margin $=50^{\circ}$, and gain margin $G 10 \mathrm{~dB}$.

- Since the specification calls for a phase margin of 50°, the additional phase lead necessary to
- satisfy the phase-margin requirement is 36°. A lead compensator can contribute this amount.
- Taking the shift of the gain crossover frequency into consideration, we may assume that fm, the maximum phase lead required, is approximately 41°.
- $\phi \mathrm{m}=41^{\circ}$ corresponds to $\alpha=0.2077$. Note that $\alpha=0.21$ corresponds to $\phi \mathrm{m}=40.76^{\circ}$.
- let us choose $\alpha=0.21$.
- The amount of the modification in the magnitude curve at $\omega=1 / \sqrt{ } \alpha \mathrm{T}$ due to the inclusion of the compensator, ($\mathrm{Ts}+1) /(\alpha \mathrm{Ts}+1)$, is

$$
\left|\frac{1+j \omega T}{1+j \omega \alpha T}\right|_{\omega=\frac{1}{\sqrt{\alpha} T}}=\left|\frac{1+j \frac{1}{\sqrt{\alpha}}}{1+j \alpha \frac{1}{\sqrt{\alpha}}}\right|=\frac{1}{\sqrt{\alpha}}
$$

$$
\frac{1}{\sqrt{\alpha}}=\frac{1}{\sqrt{0.21}}=6.7778 \mathrm{~dB}
$$

- From this diagram, we find the frequency point where $\mathrm{G}_{1}(\mathrm{j} \omega)=-6.7778 \mathrm{~dB}$ occurs at $\omega=6.5686 \mathrm{rad} / \mathrm{sec}$,

$$
\omega_{c}=\frac{1}{\sqrt{\alpha} T}
$$

$$
\frac{1}{T}=\omega_{c} \sqrt{\alpha}=6.5686 \sqrt{0.21}=3.0101
$$

$$
\frac{1}{\alpha T}=\frac{\omega_{c}}{\sqrt{\alpha}}=\frac{6.5686}{\sqrt{0.21}}=14.3339
$$

$$
\begin{aligned}
& G_{c}=K_{c} \frac{s+3.0101}{S+14.3339}=K_{c} \alpha \frac{0.3322 s+1}{0.06976 s+1} \\
& K_{c}=\frac{K}{\alpha}=\frac{2}{0.21}=9.5238 \\
& G_{c}=9.5238 \frac{s+3.0101}{s+14.3339}=2 \frac{0.3322 s+1}{0.06976 s+1}
\end{aligned}
$$

Extra Homework

$$
G(s)=\frac{16}{s(s+4)}
$$

- $b=0$, determine the damping ratio undamped natural frequency, peak overshoot from a unit step input and the steady-state error resulting from a unit ramp input.
- Determine b which will increase the equivalent damping ratio of the system to 0.8
- The resulting steady-state error from unit ramp input.

