
Lecture Notes on 
Mathematical Modeling of Chemical Processes 

 
General Modeling Principles 
 
1. The model equations are at best an approximation to the real process. 
2. Modeling inherently involves a compromise between model accuracy and 

complexity on one hand, and the cost and effort required to develop the model, on 
the other hand. 

3. Process modeling is both an art and a science. Creativity is required to make 
simplifying assumptions that result in an appropriate model. 

4. Dynamic models of chemical processes consist of ordinary differential equations 
(ODE) and/or partial differential equations (PDE), plus related algebraic equations. 

 
Physical Modeling Approaches 
 
1. Thermodynamics, chemical kinetics (physical/chemical fundamental, global) 
2. Model structure by theoretical analysis 
3. Conservation Laws (Theoretical models of chemical processes are based on 

conservation laws.) 
4. Heat, mass, and momentum transfer 
5. Physical property relationships (viscosity, thermal conductivity, diffusivity) 
6. Model complexity must be determined (assumptions, e. g. ideal gas) 
   
Comment: 

 
Can be computationally expensive (therefore, not real-time) 
May be expensive/time-consuming to obtain 
Good for extrapolation, scale-up 
Does not require experimental data to obtain (data required for validation and 

fitting) 
 
A Systematic Approach for Developing Dynamic Models 
 

1. State the modeling objectives and the end use of the model. They determine the 
required levels of model detail and model accuracy.  

2. Draw a schematic diagram of the process and label all process variables.  
3. List all of the assumptions that are involved in developing the model.  Try for 

parsimony; the model should be no more complicated than necessary to meet the 
modeling objectives. 

4. Determine whether spatial variations of process variables are important.  If so, a 
partial differential equation model will be required.  

5. Write appropriate conservation equations (mass, component, energy, and so forth). 
6. Introduce equilibrium relations and other algebraic equations (from 

thermodynamics, transport phenomena, chemical kinetics, equipment geometry, 
etc.). 



7. Perform a degrees of freedom analysis to ensure that the model equations can be 
solved. 

8. Simplify the model.  It is often possible to arrange the equations so that the 
dependent variables (outputs) appear on the left side and the independent 
variables (inputs) appear on the right side.  This model form is convenient for 
computer simulation and subsequent analysis. 

9. Classify inputs as disturbance variables or as manipulated variables. 
 
Empirical (Black box) 
 

• Large number of unknown parameters  
• Can be obtained quickly (e.g., linear regression) 
• Model structure is subjective  
• Dangerous to extrapolate  

 
Semi-empirical 
  

• Compromise of first two approaches  
• Model structure may be simpler  
• Typically 2 to 10 physical parameters estimated  

   (nonlinear regression)  
• Good versatility, can be extrapolated  
• Can be run in real-time 
• linear regression 
• nonlinear regression  
• number of parameters affects accuracy of model, but confidence limits on 

the parameters fitted must be evaluated 
• objective function for data fitting – minimize sum of squares of errors 

between data points and model predictions (use optimization code to fit 
parameters)  

• nonlinear models such as neural nets are becoming popular (automatic 
modeling)  

 
Uses of Mathematical Modeling  
 

• to improve understanding of the process  
• to optimize process design/operating conditions 
• to design a control strategy for the process  
• to train operating personnel 
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Conservation of Energy 
 
The general law of energy conservation is also called the First Law of Thermodynamics. 
It can be expressed as: 
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Example 1:  A Blending Process (discussed in Lecture I) 

 
Figure 1.  Stirred-tank blending process 
 
An unsteady-state mass balance for the blending system: 
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that is 
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where w1, w2, and w are mass flow rates. 
 
The unsteady-state component balance is: 
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that is 

( ) wxxwxw
dt
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−+= 2211

ρ       2 

 
The corresponding steady-state model was derived in Lecture I:  
 
 www −+= 210        3 

 
xwxwxw −+= 22110        4 

 
For constant ρ, Eqs. 1 and 2 become: 
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Equation 6 can be simplified by expanding the accumulation term (left side) using the 
“chain rule” for differentiation of a product: 
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Substitution of 7 into 6 gives: 
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Substitution of the mass balance in 5 for /dV dtρ  in 8 gives: 
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After canceling common terms and rearranging 5 and 9, a more convenient model form is 
obtained: 
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Rearrange Eq.6, 
 

2211 xwxwwx
dt
dxV +=+ρ       12 

 
At steady state,  Eq.6 becomes, 
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Subtract Eq.13 from Eq.14, 
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Let x = ∆x, w1 = ∆w1,  w2 = ∆w2 and x1 = ∆x1, 
 

1
0
1 wxwx

dt
dxV =+ρ        18 

 



2
0
2 wxwx

dt
dxV =+ρ        19 

 

1
0
1 xwwx

dt
dxV =+ρ        20 

 

 
Figure 2.  Exit composition responses of a stirred-tank blending process to step changes 

in: 
(b) flow rate w1 
(c) flow rate w2 
(d) inlet composition x1 
(e) Normalized response for parts (b)-(d). 

 
 
 



Example 2: Stirred-Tank Heating Process with constant holdup, V 

 
Assumptions: 
 

1. Perfect mixing; thus, the exit temperature T is also the temperature of the tank 
contents. 

2. The liquid holdup V is constant because the inlet and outlet flow rates are equal. 
3. The density and heat capacity C of the liquid are assumed to be constant. Thus, 

their temperature dependence is neglected. 
4. Heat losses are negligible. 

 
In addition, for the processes and examples considered in this course, it is appropriate to 
make two assumptions: 
 

1. Changes in potential energy and kinetic energy can be neglected because they are 
small in comparison with changes in internal energy. 

2. The net rate of work can be neglected because it is small compared to the rates of 
heat transfer and convection. 

 
For these reasonable assumptions, the energy balance  
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that is 

 QHw
dt

dU
+∆−= )ˆ(int        21 

where 
 Uint = the internal energy of the system 



 Ĥ   = enthalpy per unit mass 
 w    = mass flow rate 
 Q    = rate of heat transfer to the system 

  ∆    = denotes the difference between outlet and inlet conditions of the flowing 
   streams; therefore 

)ˆ( Hw∆−   = rate of enthalpy of the inlet stream(s)-the enthalpy of the outlet stream(s) 
 
Model Development  
 

The definition of the enthalpy of a pure substance, 
 

pVUH += int        22 
 
Therefore, for a pure liquid at low or moderate pressures, the internal energy is 
approximately equal to the enthalpy, U int H≈ , and H depends only on temperature.  
From the laws of thermodynamics, a differential change in temperature, dT, produces a 
corresponding change in the internal energy per unit mass, , int

ˆdU
 
        23 CdTHdUd == ˆˆ

int

 
where C is the constant pressure heat capacity (assumed to be constant). The total internal 
energy of the liquid in the tank is: 
 
         24 intint ÛVU ρ=
 
An expression for the rate of internal energy accumulation can be derived from Eqs.14 
and 15: 
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Note that this term appears in the general energy balance of Eq.21. 
 
Suppose that the liquid in the tank is at a temperature T and has an enthalpy, . 
Integrating Eq.14 from a reference temperature T

Ĥ
ref  to T gives, 
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where  is the value of  at Tˆ

refH Ĥ ref. Without loss of generality, we assume that ˆ 0refH = . 
Thus, Eq.26 can be written as: 
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For the inlet stream 
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Substituting Eq.27 and 28 into the convection term of Eq.21 gives: 
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Finally, substitution of Eq.25 and 29 into 21 
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Rearrange Eq.30, 
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At steady state, 
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Subtract Eq.32 from Eq.34 
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Subtract Eq.232 from Eq.37 
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Rearrange Eqs.35 and 38 
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Example 3 Surge Tank 
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Figure 4.  Surge Tank 
 
Mass balance (assume constant density), 
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Use the knowledge you learned from the Unit Operation of Chemical Engineering, in the 
laminar flow region, 
 
         42 LCF vout

'=
 
where C  is the flow parameter '

v



also,  
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where A is the cross section of the tank. 
therefore, 
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From mass balance, 
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At steady state, 
 
        46 0'00 LCFF voutin ==
 

 )()()( 00'
0

ininv FFLLC
dt

LLdA ∆+=∆++
∆+     47 

 

 inv FLC
dt

LdA ∆=∆+
∆ '        48 

 
Rearrange, 
 

 in
vv

F
C

L
dt

Ld
C
A

∆=∆+
∆

''

1       49 

 
Similarly, 
 

 out
vv

F
C

L
dt

Ld
C
A

∆
−

=∆+
∆

''

1       50 

 
Combine 
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When flow is large, it becomes turbulent, then, 
 
 LCF vout =         52 
 
Let K be the slope of the tangent of the F-L curve at the set point,  
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therefore,  
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Substitute back to the mass balance equation, 
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After rearrange, 
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General form of the first order system  
 
Let y = Tout and x = Tin, omit ∆ for simplicity, 
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where τ  is called the time constant, K is the gain, y is the output variable, and x is the 
input variable. 
 
 Time constant τ  = Resister R × Capacity C 
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Figure 5.  Step response of a first order system 
 
 
 
Example 4.  Modeling Surge Tank Using State Space Techniques  
 
Recall Eqs.5, 6 and 52 assume constant density, 
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At steady state, 
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Assume small deviations about this point, let, 
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Also recall the linearization procedure  
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Substitute Eqs.66, 67, 68, 69 and 73 back to Eqs.5 and 6 and subtract Eqs.63 and 64, 
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Subtract Eq.70 from 71, 
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Now with and as output, we get the model 0)( FtF − 0)( xtx −
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Example 5.  Tanks in series 
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Figure 6.  Tanks in series  
 
Mass balance, 
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where  A1, A2 are the capacity of tank 1 and tank 2, 
R1, R2 are the resister of tank 1 and tank 2, 
assume they are all linear. 
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differentiate  
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let T1 = A1R1 and T2 = A2R2， 
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This is a second order system. 


