Bode Diagram

Frequency Response

- Frequency Response is the steadystate behavior of the system when forced by a sinusoidal input.
- Consider a first order system

$$
G(s)=\frac{C(s)}{R(s)}=\frac{K_{p}}{\tau s+1}
$$

- Let us assume that this process is subjected to a sinusoidal input

$$
u(t)=A \sin \omega t
$$

where A is the amplitude and ω is the frequency

- Laplace transform of the input gives

$$
U(s)=\frac{A \omega}{s^{2}+\omega^{2}}
$$

- hence, the Laplace transform of the output becomes

$$
C(s)=\frac{K_{p}}{\tau s+1} \frac{A \omega}{s^{2}+\omega^{2}}
$$

- expanded into fractions

$$
C(s)=\frac{B_{1}}{s+1 / \tau}+\frac{B_{2}}{s+j \omega}+\frac{B_{3}}{s-j \omega}
$$

- inverse Laplace transform, take $\boldsymbol{t} \rightarrow \infty$,

$$
u(t \rightarrow \infty)=\frac{A K_{p}}{\omega^{2} \tau^{2}+1} \sin \omega t-\frac{A K_{p}}{\omega^{2} \tau^{2}+1} \cos \omega t
$$

- Or
$a_{1} \sin \omega t+a_{2} \cos \omega t=a_{3} \sin (\omega t+\varphi)$
- where $a_{3}=\sqrt{a_{1}^{2}+a_{2}^{2}}, \varphi=\tan ^{-1}\left(\frac{a_{2}}{a_{1}}\right)$
- Therefore, $u(t \rightarrow \infty)=\frac{A K_{p}}{\sqrt{\omega^{2} \tau^{2}+1}} \sin (\omega t+\varphi)$

$$
\varphi=\tan ^{-1}(-\omega \tau)
$$

- It can be seen that the response to a sinusoidal input signal is a sinusoidal signal with the same frequency but a different angle. The output signal lags behind the input signal by an angle φ, which depends on the frequency ω.
- The ratio between the amplitude of the input sine wave and the output sine wave, called amplitude ratio,

$$
A R=\frac{K_{p}}{\sqrt{\omega^{2} \tau^{2}+1}}
$$

- Substitution of $s=j \omega$ in the transfer function $G(s)$ results in a transfer function in the frequency domain $G(j \omega)$. Then the magnitude is equal to the amplitude ratio $A R$:

$$
A R=|G(j \omega)|
$$

- and the phase angle or argument is equal to:

$$
\varphi=\arg [G(j \omega)]
$$

- $G(j \omega)$ is a complex number, it can therefore be represented by a real and imaginary part:

$$
G(j \omega)=\operatorname{Re}[G(j \omega)]+j \operatorname{Im}[G(j \omega)]
$$

- for which:

$$
\begin{aligned}
& A R=|G(j \omega)|=\sqrt{(\operatorname{Re}[G(j \omega)]]^{2}+(j \operatorname{Im}[G(j \omega)])^{2}} \\
& \varphi=\arg [G(j \omega)]=\tan ^{-1} \frac{\operatorname{Im}[G(j \omega)]}{\operatorname{Re}[G(j \omega)]}
\end{aligned}
$$

- When substituting $\boldsymbol{s}=\boldsymbol{j} \omega$ into

$$
\begin{aligned}
& G(j \omega)=\frac{C(j \omega)}{R(j \omega)}=\frac{K_{p}}{\tau(j \omega)+1} \frac{(-\tau(j \omega)+1)}{(-\tau(j \omega)+1)} \\
& =\frac{K_{p}}{\omega^{2} \tau^{2}+1}-j \frac{K_{p} \omega \tau}{\omega^{2} \tau^{2}+1}
\end{aligned}
$$

- Therefore, magnitude $=A R=\frac{K_{p}}{\sqrt{\omega^{2} \tau^{2}+1}}$

$$
\text { phase angle } \varphi=\tan ^{-1}(-\omega \tau)
$$

- A transfer function is often a combination of subtransfer functions, consisting of numerator and denominator terms:

$$
G(j \omega)=\frac{G_{1}(j \omega) G_{2}(j \omega) \cdots G_{n}(j \omega)}{G_{n+1}(j \omega) G_{n+2}(j \omega) \cdots G_{m}(j \omega)}
$$

- It can easily be shown that

$$
\begin{gathered}
A R=\left|G_{1}(j \omega) G_{2}(j \omega) \cdots\right|=\left|G_{1}(j \omega)\right|\left|G_{2}(j \omega)\right| \cdots \\
\varphi=\arg \left[G_{1}(j \omega) G_{2}(j \omega) \cdots\right]=\arg \left[G_{1}(j \omega)\right]+\arg \left[G_{2}(j \omega)\right]+\cdots
\end{gathered}
$$

- For inverse transfer functions the amplitude ratio and phase angle can be derived from the property:

$$
A R=\left|\frac{1}{G(j \omega)}\right|=\frac{1}{|G(j \omega)|} \quad \varphi=\arg \frac{1}{G(j \omega)}=-\arg [G(j \omega)]
$$

- Therefore,

$$
\begin{aligned}
& \text { 1erefore, } \quad A R=|G(j \omega)|=\frac{\prod_{i=1}^{n}\left|G_{i}(j \omega)\right|}{\prod_{j=n+1}^{m}\left|G_{j}(j \omega)\right|} \\
& \varphi=\arg [G(j \omega)]=\sum_{i}^{n} \arg \left[G_{i}(j \omega)\right]-\sum_{j=n+1}^{m} \arg \left[G_{j}(j \omega)\right]
\end{aligned}
$$

Bode Diagram

- The graphs in which the amplitude ratio and phase shift are plotted as a function of the frequency ω, are called Bode diagrams.
- In the Bode plot, $\log (A R)$ and φ are shown as a function of ω. In case of the first-order process,

$$
\text { magnitude }=A R=\frac{K_{p}}{\sqrt{\omega^{2} \tau^{2}+1}}
$$

- Or $\log (A R)=\log \left(K_{p}\right)-\frac{1}{2} \log \left(\omega^{2} \tau^{2}+1\right)$
- thus $\log (A R)$ becomes a linear function of $\log (\omega \tau)$ with a slope of -1 .
- In case of $\omega \ll 1 / \tau$:

$$
\log (A R)=\log \left(K_{p}\right)+\frac{1}{2} \log (1)=\log \left(K_{p}\right)
$$

thus the gain of the process is independent of the frequency ω.

- In case $\omega=1 / \tau$:

$$
\log (A R)=\log \left(K_{p}\right)+\frac{1}{2} \log (2)
$$

$$
\text { phase angle } \varphi=\tan ^{-1}(-\omega \tau)
$$

- In case of $\omega \gg \mathbf{1} / \tau$:

$$
\text { phase angle } \varphi=\tan ^{-1}(\infty)=-90^{\circ}
$$

- In case $\omega \ll \mathbf{1} / \tau$:

$$
\text { phase angle } \varphi=\tan ^{-1}(0)=0^{\circ}
$$

- In case $\omega=1 / \tau$:

$$
\text { phase angle } \varphi=\tan ^{-1}(1)=-45^{\circ}
$$

Bode diagram of a first-order process

Second-order Non-interacting System

$$
G(s)=\frac{K_{1}}{\left(\tau_{1} s+1\right)} \frac{K_{2}}{\left(\tau_{2} s+1\right)}
$$

- the amplitude ratio and phase angle become:

$$
\begin{aligned}
& A R=|G(j \omega)|=\frac{\prod_{i=1}^{n}\left|G_{i}(j \omega)\right|}{\prod_{j=n+1}^{m}\left|G_{j}(j \omega)\right|} \quad A R=\frac{K_{1} K_{2}}{\sqrt{\omega^{2} \tau_{1}^{2}+1} \sqrt{\omega^{2} \tau_{2}^{2}+1}} \\
& \varphi=\arg [G(j \omega)]=\sum_{i}^{n} \arg \left[G_{i}(j \omega)\right]-\sum_{j=n+1}^{m} \arg \left[G_{j}(j \omega)\right] \\
& \varphi=\tan ^{-1}\left(-\omega \tau_{1}\right)+\tan ^{-1}\left(-\omega \tau_{2}\right)
\end{aligned}
$$

Underdamped Second-order System

- Second-order System

$$
G(s)=\frac{K_{p}}{\tau^{2} s^{2}+2 \zeta \tau s+1}
$$

- Substituting $s=\boldsymbol{j} \omega$ into equation and rearranging results in:

$$
G(j \omega)=\frac{K_{p}}{\left(1-\omega^{2} \tau^{2}\right)+2 j \zeta \omega \tau}
$$

- Recall:

$$
\begin{aligned}
& A R=|G(j \omega)|=\sqrt{(\operatorname{Re}[G(j \omega)])^{2}+(j \operatorname{Im}[G(j \omega)])^{2}} \\
& \varphi=\arg [G(j \omega)]=\tan ^{-1} \frac{\operatorname{Im}[G(j \omega)]}{\operatorname{Re}[G(j \omega)]}
\end{aligned}
$$

- Therefore, $G(j \omega)=\frac{K_{p}}{\left(1-\omega^{2} \tau^{2}\right)+2 j \zeta \omega \tau} \frac{\left(1-\omega^{2} \tau^{2}\right)-2 j \zeta \omega \tau}{\left(1-\omega^{2} \tau^{2}\right)-2 j \zeta \omega \tau}$

$$
=\frac{K_{p}}{\left(1-\omega^{2} \tau^{2}\right)^{2}+(2 \zeta \omega \tau)^{2}}\left[\left(1-\omega^{2} \tau^{2}\right)-2 j \zeta \omega \tau\right]
$$

$$
A R=\frac{K_{p}}{\sqrt{\left(1-\omega^{2} \tau^{2}\right)^{2}+(2 \zeta \omega \tau)^{2}}}
$$

$$
\varphi=\tan ^{-1}\left(-\frac{2 \zeta \omega \tau}{1-\omega^{2} \tau^{2}}\right)
$$

Bode diagram for second-order under-damped process

- On the Bode magnitude plot, decibels are used, defined as:

$$
a_{d B}=20 \log _{10} a, \quad \text { decibels or } d B
$$

- The log-magnitude curve for a constant gain K is a horizontal straight line at the magnitude of

$$
20 \log _{10} K, d B
$$

- Integral and derivative factors $(j \omega)^{\mp}$

$$
20 \log \left|(j \omega)^{\mp}\right|=\mp 20 \log \omega, d B
$$

Example I

- For the transfer function:

$$
H(s)=\frac{100}{s+30}
$$

- Step 1: Rewrite the transfer function in proper form. Make both the lowest order term in the numerator and denominator unity. Therefore, the numerator is an order 0 polynomial, the denominator is order 1.

$$
H(s)=\frac{100}{30} \frac{1}{\frac{s}{30}+1}=3.3 \frac{1}{\frac{s}{30}+1}
$$

- Step 2: Separate the transfer function into its constituent parts.
- The transfer function has 2 components:
- A constant of 3.3
- A pole at $\mathrm{s}=-\mathbf{3 0}$
- Step 3: Draw the Bode diagram for each part.

Magnitude Plot

- The constant is the cyan (青色) line (A quantity of 3.3 is equal to $\mathbf{1 0 . 4} \mathbf{d B}$). The phase is constant at 0 degrees.
- The pole at - $\mathbf{3 0} \mathbf{r a d} / \mathrm{sec}$ is the blue line. It is $\mathbf{0 ~ d B}$ up to the break frequency, then drops off with a slope of $\mathbf{- 2 0} \mathbf{d B} /$ dec.
- The phase is 0 degrees up to $1 / 10$ the break frequency ($3 \mathrm{rad} / \mathrm{sec}$) then drops linearly down to 90 degrees at 10 times the break frequency (300 rad/sec).

Step 4: Draw the overall Bode diagram by adding up the results from step 3.

Example II

- Bode Diagram for the transfer function:

$$
H(s)=100 \frac{s+1}{(s+10)(s+100)}=100 \frac{s+1}{s^{2}+110 s+1000}
$$

- Step 1: Rewrite the transfer function in proper form. Make both the lowest order term in the numerator and denominator unity. The numerator is an order 1 polynomial, the denominator is order 2.

$$
H(s)=\frac{100}{10 \cdot 100} \frac{\frac{s}{1}+1}{\left(\frac{s}{10}+1\right)\left(\frac{s}{100}+1\right)}=0.1 \frac{\frac{s}{1}+1}{\left(\frac{s}{10}+1\right)\left(\frac{s}{100}+1\right)}
$$

- Step 2: Separate the transfer function into its constituent parts.
- The transfer function has $\mathbf{4}$ components:
- A constant of 0.1
- A pole at $\mathrm{s}=-10$
- A pole at $\mathbf{s = - 1 0 0}$
- A zero at $\mathrm{s}=-1$
- Step 3: Draw the Bode diagram for each part.
- The constant is the cyan line (A quantity of 0.1 is equal to $\mathbf{- 2 0} \mathbf{d B}$). The phase is constant at 0 degrees.
- The zero at $1 \mathrm{rad} / \mathrm{sec}$ is the red line. It is 0 dB up to the break frequency, then rises at 20 $\mathrm{dB} /$ dec. The phase is 0 degrees up to $1 / 10$ the break frequency ($0.1 \mathrm{rad} / \mathrm{sec}$) then rises linearly to 90 degrees at 10 times the break frequency (10 rad/sec).

- The pole at $10 \mathrm{rad} / \mathrm{sec}$ is the green line. It is 0 dB up to the break frequency, then drops off with a slope of $-20 \mathrm{~dB} / \mathrm{dec}$. The phase is 0 degrees up to $1 / 10$ the break frequency ($1 \mathrm{rad} / \mathrm{sec}$) then drops linearly down to -90 degrees at $\mathbf{1 0}$ times the break frequency ($100 \mathrm{rad} / \mathrm{sec}$).
- The pole at $100 \mathrm{rad} / \mathrm{sec}$ is the blue line. It is 0 dB up to the break frequency, then drops off with a slope of $-20 \mathrm{~dB} / \mathrm{dec}$. The phase is 0 degrees up to $1 / 10$ the break frequency ($10 \mathrm{rad} / \mathrm{sec}$) then drops linearly down to -90 degrees at $\mathbf{1 0}$ times the break frequency ($1000 \mathrm{rad} / \mathrm{sec}$).

Step 4: Draw the overall Bode diagram by adding up the results from step 3.

Stability Analysis

- The phase and gain margins can easily be obtained from the Bode diagram.

- For $K=10$ and $K=100$, find the phase and gain margins

