
Bode Diagram 



Frequency Response

• Frequency Response is the steadystate behavior of 
the system when forced by a sinusoidal input.

• Consider a first order system

• Let us assume that this process is subjected to a 
sinusoidal input

where A is the amplitude and ω is the frequency
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• Laplace transform of the input gives

• hence, the Laplace transform of the output 
becomes

• expanded into fractions
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• inverse Laplace transform, take t →∞,

• Or 

• where 

• Therefore,
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• It can be seen that the response to a sinusoidal 
input signal is a sinusoidal signal with the same 
frequency but a different angle. The output signal 
lags behind the input signal by an angle ϕ, which 
depends on the frequency ω.

• The ratio between the amplitude of the input sine 
wave and the output sine wave, called amplitude 
ratio,
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• Substitution of s = jω in the transfer function G(s) 
results in a transfer function in the frequency 
domain G(jω). Then the magnitude is equal to the 
amplitude ratio AR:

• and the phase angle or argument is equal to:
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• G(jω) is a complex number, it can therefore be 
represented by a real and imaginary part:

• for which:
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• When substituting s = jω into

• Therefore, 
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• A transfer function is often a combination of sub-
transfer functions, consisting of numerator and 
denominator terms:

• It can easily be shown that
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• For inverse transfer functions the amplitude ratio 
and phase angle can be derived from the property:

• Therefore,
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Bode Diagram

• The graphs in which the amplitude ratio and 
phase shift are plotted as a function of the 
frequency ω, are called Bode diagrams.

• In the Bode plot, log(AR) and ϕ are shown as a 
function of ω. In case of the first-order process,
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• thus log (AR) becomes a linear function of log(ωτ) 
with a slope of –1.

• In case of ω << 1/τ :

thus the gain of the process is independent of the 
frequency ω .

• In case ω = 1/τ :
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• In case of ω >> 1/τ :

• In case ω << 1/τ :

• In case ω = 1/τ :
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Bode diagram of a first-order process



Second-order Non-interacting System

• the amplitude ratio and phase angle become:
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Underdamped Second-order System

• Second-order System

• Substituting s = jω into equation and rearranging 
results in:

• Recall: 
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Bode diagram for second-order 
under-damped process



• On the Bode magnitude plot, decibels are used, 
defined as:

• The log-magnitude curve for a constant gain K is a 
horizontal straight line at the magnitude of 

• Integral and derivative factors 
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Example I

• For the transfer function: 

• Step 1: Rewrite the transfer function in proper 
form. Make both the lowest order term in the 
numerator and denominator unity. Therefore, the 
numerator is an order 0 polynomial, the 
denominator is order 1. 



• Step 2: Separate the transfer function into its 
constituent parts. 

• The transfer function has 2 components:
– A constant of 3.3 
– A pole at s=-30



• Step 3: Draw the Bode diagram for each part.



• The constant is the cyan (青色) line (A quantity of 
3.3 is equal to 10.4 dB). The phase is constant at 0 
degrees. 

• The pole at -30 rad/sec is the blue line. It is 0 dB 
up to the break frequency, then drops off with a 
slope of -20 dB/dec.

• The phase is 0 degrees up to 1/10 the break 
frequency (3 rad/sec) then drops linearly down to -
90 degrees at 10 times the break frequency (300 
rad/sec). 



Step 4: Draw the overall Bode diagram by adding up 
the results from step 3.



Example II

• Bode Diagram for the transfer function: 

• Step 1: Rewrite the transfer function in proper 
form. Make both the lowest order term in the 
numerator and denominator unity. The 
numerator is an order 1 polynomial, the 
denominator is order 2. 



• Step 2: Separate the transfer function into its 
constituent parts.

• The transfer function has 4 components:
– A constant of 0.1 
– A pole at s=-10 
– A pole at s=-100 
– A zero at s=-1 



• Step 3: Draw the Bode diagram for each part. 
• The constant is the cyan line (A quantity of 0.1 is 

equal to -20 dB). The phase is constant at 0 
degrees. 

• The zero at 1 rad/sec is the red line. It is 0 dB up 
to the break frequency, then rises at 20 
dB/dec. The phase is 0 degrees up to 1/10 the 
break frequency (0.1 rad/sec) then rises linearly 
to 90 degrees at 10 times the break frequency (10 
rad/sec). 





• The pole at 10 rad/sec is the green line. It is 0 dB 
up to the break frequency, then drops off with a 
slope of -20 dB/dec. The phase is 0 degrees up to 
1/10 the break frequency (1 rad/sec) then drops 
linearly down to -90 degrees at 10 times the break 
frequency (100 rad/sec). 

• The pole at 100 rad/sec is the blue line. It is 0 dB 
up to the break frequency, then drops off with a 
slope of -20 dB/dec. The phase is 0 degrees up to 
1/10 the break frequency (10 rad/sec) then drops 
linearly down to -90 degrees at 10 times the break 
frequency (1000 rad/sec). 



Step 4: Draw the overall Bode diagram by adding up 
the results from step 3.



Stability Analysis

• The phase and gain margins can easily be 
obtained from the Bode diagram.

• For K = 10 and K = 100, find the phase and gain 
margins
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