Auxiliary Functions Legendre Transforms

Min Huang
Chemical Engineering
Tongji University

Auxiliary Function

- The term "auxiliary function" usually refers to the functions created during the course of a proof in order to prove the result.
- In thermodynamics, quantities with dimensions of energy were introduced that have useful physical interpretations and simplify calculations in situations where controlled set of variables were used.

Work

- In general, work can be divided into two parts:
- work of expansion and contraction, and
- work of the sum of all other forms
- Therefore in the reversible case,

$$
\underline{f} \cdot d \underline{X}=-p d V+\sum\left(\mu_{i} d n\right)_{i}
$$

where μ_{i} will be defined as the chemical potential of species i, but not yet at this moment.

Euler's theorem

- Euler's homogeneous function theorem States that: Suppose that the function f is continuously differentiable, then f is positive homogeneous of degree \mathbf{n} if and only if

$$
f(\lambda \underline{x})=\lambda^{n} f(\underline{x})
$$

- $\mathrm{n}=1$, f is a first-order homogeneous function

Euler's theorem

- Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a first-order homogeneous function of x_{1}, \ldots, x_{n}.
- Let $u_{\mathrm{i}}=\lambda x_{\mathrm{i}}$
- $\operatorname{Then} f\left(u_{1}, \ldots, u_{n}\right)=\lambda f\left(x_{1}, \ldots, x_{n}\right)$
- Differentiate with respect to λ;

$$
\begin{equation*}
\left(\frac{\partial f\left(u_{1}, \ldots, u_{n}\right)}{\partial \lambda}\right)_{x_{i}}=f\left(x_{1}, \ldots, x_{n}\right) \tag{1}
\end{equation*}
$$

Euler's theorem

- From calculus,

$$
\begin{equation*}
d f\left(u_{1}, \ldots, u_{n}\right)=\sum_{i=1}^{n}\left(\partial f / \partial u_{i}\right)_{u_{j}} d u_{i} \tag{2}
\end{equation*}
$$

- and,

$$
\begin{align*}
(\partial f / \partial l)_{x_{i}} & =\sum_{i=1}\left(\partial f / \partial u_{i}\right)_{u_{j}}\left(\partial u_{i} \partial l\right)_{x_{i}} \\
& =\sum_{i=1}^{n}\left(\partial f / \partial u_{i}\right)_{u_{j}} x_{i} \tag{3}
\end{align*}
$$

Euler's theorem

- Substitute back to the first equation,

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}\left(\partial f / \partial u_{i}\right)_{u_{j}} x_{i} \tag{4}
\end{equation*}
$$

- Take $\lambda=1$,

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}\left(\partial f / \partial x_{i}\right)_{x_{j}} x_{i} \tag{5}
\end{equation*}
$$

- This is Euler's theorem for first-order homogeneous functions

Legendre Transform

- Recall the $\mathbf{2}^{\text {nd }}$ law of thermodynamics,

$$
\begin{aligned}
d S & =(1 / T) d E-(\underline{f} / T) \cdot d \underline{X} \\
d E & =T d S+\underline{f} \cdot d \underline{X}
\end{aligned}
$$

- and $\underline{f} \cdot d \underline{X}=-p d V+\sum \mu_{i} d n_{i}$
- we arrive at,

$$
d E=T d S-p d V+\sum_{i} \mu_{i} d n_{i}
$$

- Thus, $E=E\left(S, V, n_{1}, n_{2} \ldots, n_{r}\right)$, is a natural function of S, V, and the n_{i} 's.

Legendre Transform

- However, experimentally, T is much more convenient than S.
- Assume $f=f\left(x_{1}, \ldots, x_{n}\right)$ is a natural function of x_{1}, \ldots, x_{n}.
- Then, $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n}\left(\partial f / \partial x_{i}\right)_{x_{j}} x_{i}$ homogeneous functions

$$
d f=\sum_{i=1}^{n} u_{i} d x_{i} \quad u_{i}=\left(\partial f / \partial x_{i}\right)_{x_{j}}
$$

- Let $g=f-\sum_{i=r+1} u_{i} d x_{i}$

Legendre Transform

- Then, $d g=d f-\sum_{i=r+1}\left(u_{i} d x_{i}+x_{i} d u_{i}\right)$

$$
=\sum_{i=1} u_{i} d x_{i}+\sum_{i=r+1}\left(-x_{i}\right) d u_{i}
$$

- Thus, $g=g\left(x_{1}, \ldots, x_{r}, u_{\mathrm{r}+1}, \ldots, u_{\mathrm{n}}\right)$ is a natural function of x_{1}, \ldots, x_{r} and the conjugate variables to $x_{\mathrm{r}+1}, \ldots, x_{\mathrm{n}}$, namely $u_{\mathrm{r}+1}, \ldots, u_{\mathrm{n}}$.
- The function g is called a Legendre transform of f.

Legendre Transform

- It transform away the dependence upon x_{r+1}, \ldots, x_{n} to a dependence upon u_{r+1}, \ldots, u_{n}.
- It is apparent that this type of transformation allows one to introduce a natural function of T, V, and n, since T is simply the conjugate variable to S; so as to p to V.

Legendre Transform

- From the first and second law, we have

$$
E=E(S, V, n)
$$

- We construct a natural function of T, V and n, by subtract from the $E(S, V, n)$ the quantity $S \times($ variable conjugate to $S)=S T$.
- Let $A(T, V, n)=E-T S$ called the Helmholtz free energy
- Therefore,

$$
d A=-S d T-p d V+\sum_{i=1} \mu_{i} d n_{i}
$$

Legendre Transform

- Let $G(T, p, n)$ be the Gibbs free energy
$G=E-T S-(-p V)$
- And H(S, $p, n)$ be the Enthalpy
$\mathrm{H}=E-(-p V)=E+p V$
- Therefore,

$$
\begin{aligned}
& d G=-S d T+V d p+\sum_{i=1} \mu_{i} d n_{i} \\
& d H=T d S+V d p+\sum_{i=1}^{r} \mu_{i} d n_{i}
\end{aligned}
$$

Think also about, volume to U pressure to H

Maxwell Relations

- Armed with the auxiliary, many types of different measurements can be interrelated.
- Consider,
$\stackrel{(\partial S / \partial V)_{T, n}}{\uparrow \uparrow}$ implies we are viewing S as function of the natural function of T, V and n.

Maxwell Relations

- If $d f=a d x+b d y$, from calculus,

$$
(\partial a / \partial y)_{x}=(\partial b / \partial x)_{y}
$$

- Recall $d A=-S d T-p d V+\mu d n$
- Then we have

$$
(\partial S / \partial V)_{T, n}=(\partial p / \partial T)_{V, n}
$$

- and

$$
\begin{aligned}
d G=-S d T & -V d p+\mu d n \\
(\partial S / \partial p)_{T, n} & =-(\partial V / \partial T)_{p, n}
\end{aligned}
$$

Example I

- Let $C_{v}=T(\partial S / \partial T)_{V, n}$
- then

$$
\begin{aligned}
\left(\frac{\partial C_{V}}{\partial V}\right)_{T, n} & =T\left(\frac{\partial}{\partial V}\left(\frac{\partial S}{\partial T}\right)_{V, n}\right)_{T, n} \\
& =T\left(\frac{\partial}{\partial T}\left(\frac{\partial S}{\partial V}\right)_{T, n}\right)_{V, n} \\
& =T\left(\frac{\partial}{\partial T}\left(\frac{\partial p}{\partial T}\right)_{V, n}\right)_{V, n} \\
& =T\left(\frac{\partial^{2} p}{\partial T^{2}}\right)_{V, n}
\end{aligned}
$$

Quiz (exercise 1.10)

- Derive an analogous form for (15 Mins)

$$
\left(\frac{\partial C_{p}}{\partial V}\right)_{T, n}
$$

solution

$$
\begin{aligned}
\left(\frac{\partial C_{p}}{\partial p}\right)_{T, n} & =T\left(\frac{\partial}{\partial p}\left(\frac{\partial S}{\partial T}\right)_{p, n}\right)_{T, n} \\
& =T\left(\frac{\partial}{\partial T}\left(\frac{\partial S}{\partial p}\right)_{T, n}\right)_{p, n} \\
& =T\left(\frac{\partial}{\partial T}\left(-\frac{\partial V}{\partial T}\right)_{p, n}\right)_{p, n} \\
& =-T\left(\frac{\partial^{2} V}{\partial T^{2}}\right)_{p, n}
\end{aligned}
$$

Example II

- Let $C_{p}=T\left(\frac{\partial S}{\partial T}\right)_{p, n}$
- Viewing S as a function of T, V and n
- We have

$$
\begin{aligned}
& (d S)_{n}=\left(\frac{\partial S}{\partial T}\right)_{V, n}(d T)_{n}+\left(\frac{\partial S}{\partial V}\right)_{T, n}(d V)_{n} \\
& \left(\frac{\partial S}{\partial T}\right)_{p, n}=\left(\frac{\partial S}{\partial T}\right)_{V, n}+\left(\frac{\partial S}{\partial V}\right)_{T, n}\left(\frac{d V}{\partial T}\right)_{n, p}
\end{aligned}
$$

Maxwell Relations

- Hence $\frac{1}{T} C_{p}=\frac{1}{T} C_{v}+\left(\frac{\partial p}{\partial T}\right)_{V, n}\left(\frac{\partial V}{\partial T}\right)_{m, p}$
- Note that

$$
\left(\frac{\partial x}{\partial y}\right)_{z}=-\left(\frac{\partial x}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial y}\right)_{x}
$$

Euler's chain rule

- So

$$
(\partial p / \partial T)_{V, n}=-(\partial p / \partial V)_{T, n}(\partial V / \partial T)_{p, n}
$$

- Therefore

$$
C_{p}-C_{v}=-T(\partial p / \partial V)_{T, n}\left[(\partial V / \partial T)_{p, n}\right]^{2}
$$

Euler's theorem

- From the $2^{\text {nd }}$ law of thermodynamics,

$$
E=E(S, \underline{X})
$$

- the internal energy E is extensive, it depends upon S and \underline{X}, which are also extensive.

$$
E(\lambda \underline{X})=\lambda E(S, \underline{X})
$$

- Thus, $E(S, \underline{X})$ is a first order homogeneous function of S and \underline{X}.

Euler's theorem

- Therefore, from Euler's theorem, Eq.5,

$$
\begin{aligned}
E & =(\partial E / \partial S)_{\underline{x}} S+(\partial E / \partial \underline{X})_{s} \underline{X} \\
& =T S+\underline{f} \cdot \underline{X}
\end{aligned}
$$

where \underline{X} is a vector means system volume

- And work is,

$$
\underline{f} \cdot d \underline{X}=-p d V+\sum_{i} \mu_{i} d n_{i}
$$

Extensive Function

- This flow naturally as we gave earlier,

$$
d E=T d S-p d V+\sum_{i=1} \mu_{i} d n_{i}
$$

- That is, $E=E\left(S, V, n_{1}, \ldots, n_{\mathrm{r}}\right)$
- and Euler's theorem yields,

$$
E=T S-p V+\sum_{i=1} \mu_{i} n_{i}
$$

Extensive Function

- Its total differential is

$$
d E=T d S+S d T-p d V-V d p+\sum_{i=1}\left(\mu_{i} d n_{i}+n_{i} d \mu_{i}\right)
$$

- Therefore,

$$
0=S d T-V d p+\sum_{i=1}\left(n_{i} d \mu_{i}\right)
$$

This is the Gibbs-Duhem Equation

Extensive Function

- Recall the definition of Gibbs free energy

$$
G=E-T S-(-p V)
$$

- Apply Euler's theorem gives,

$$
\begin{aligned}
d G & =\left(T S-p V+\sum_{i=1}^{r} \mu_{i} d n_{i}\right)-T S-p V \\
& =\sum_{i=1}^{r} \mu_{i} d n_{i}
\end{aligned}
$$

- For one component system $\mu=G / n$, Gibbs free energy per mole

Quiz (exercise 1.14)

- Show that for a one component p-V-n system

$$
\left(\frac{\partial \mu}{\partial v}\right)_{T}=v\left(\frac{\partial p}{\partial v}\right)_{T}
$$

- where v is the volume per mole. [Hint: show that $d \mu=-s d T+v d p$, where s is the entropy per mole.

solution

- The Gibbs-Duhem Equation,

$$
0=S d T-V d p+\sum_{i=1}\left(n_{i} d \mu_{i}\right)
$$

- Implies, for one component,

$$
d \mu=s d T-v d p
$$

- Hence,

$$
\left(\frac{\partial \mu}{\partial v}\right)_{T}=-s\left(\frac{\partial T}{\partial v}\right)_{T}+v\left(\frac{\partial p}{\partial v}\right)_{T}
$$

