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Auxiliary Function

• The term "auxiliary function" usually refers 
to the functions created during the course 
of a proof in order to prove the result.

• In thermodynamics, quantities with 
dimensions of energy were introduced that 
have useful physical interpretations and 
simplify calculations in situations where 
controlled set of variables were used.



Work

• In general, work can be divided into two parts:

• work of expansion and contraction, and 

• work of the sum of all other forms

• Therefore in the reversible case,

where i will be defined as the chemical 

potential of species i, but not yet at this 

moment. 
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Euler’s theorem

• Euler's homogeneous function theorem

States that:  Suppose that the function ƒ is 
continuously differentiable, then ƒ is 
positive homogeneous of degree n if and 
only if

• n= 1, f is a first-order homogeneous 
function
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Euler’s theorem

• Let f(x1,…, xn) be a first-order homogeneous 

function of x1,…, xn.

• Let ui = xi

• Then f(u1,…,un) =  f(x1,…,xn) 

• Differentiate with respect to ;
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Euler’s theorem

• From calculus,

• and, 
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Euler’s theorem

• Substitute back to the first equation,

• Take  = 1, 

• This is Euler’s theorem for first-order 

homogeneous functions
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Legendre Transform

• Recall the 2nd law of thermodynamics,

• and

• we arrive at,

• Thus,                                  , is a natural 
function of S, V, and the ni’s.
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Legendre Transform

• However, experimentally, T is much more 

convenient than S.  

• Assume f = f(x1,…,xn) is a natural function of 

x1,…,xn.

• Then,

• Let 
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Legendre Transform

• Then,

• Thus, g = g(x1,…,xr,ur+1,…,un) is a natural 

function of x1,…,xr and the conjugate 

variables to  xr+1,…,xn, namely  ur+1,…,un.

• The function g is called a Legendre transform 

of f. 
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Legendre Transform

• It transform away the dependence upon 

xr+1,…,xn to a dependence upon ur+1,…,un.

• It is apparent that this type of transformation 

allows one to introduce a natural function of T, V, 

and n, since T is simply the conjugate variable to 

S; so as to p to V.



Legendre Transform

• From the first and second law, we have 

E = E(S, V, n)

• We construct a natural function of T, V and n, by 
subtract from the E(S, V, n) the quantity 

S  ╳ (variable conjugate to S) = ST.

• Let     A(T, V, n) = E – TS called the  Helmholtz 
free energy

• Therefore, 
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Legendre Transform

• Let  G(T, p, n) be the Gibbs free energy

G = E – TS – (–pV)

• And H(S, p, n) be the Enthalpy

H = E – (–pV) = E + pV

• Therefore, 
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Maxwell Relations

• Armed with the auxiliary, many types of 
different measurements can be interrelated.

• Consider, 

• implies we are viewing S
as function of the natural function of T, V
and n.   
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Maxwell Relations

• If df = adx + bdy, from calculus, 

• Recall

• Then we have

• and
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Example I

• Let

• then
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Quiz (exercise 1.10)

• Derive an analogous form for (15 Mins) 
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Example II

• Let

• Viewing S as a function of T, V and n

• We have
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Maxwell Relations

• Hence

• Note that

• So

• Therefore 
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Euler’s theorem

• From the 2nd law of thermodynamics,                  

• the internal energy E is extensive, it depends 

upon S and X, which are also extensive.

• Thus, E(S,X) is a first order homogeneous 

function of S and X.
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Euler’s theorem

• Therefore, from Euler’s theorem, Eq.5,

where X is a vector means system volume

• And work is, 
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Extensive Function

• This flow naturally as we gave earlier,

• That is, E = E(S,V, n1,…,nr)

• and Euler’s theorem yields,
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Extensive Function

• Its total differential is

• Therefore,
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Extensive Function

• Recall the definition of Gibbs free energy

G = E – TS – (–pV)

• Apply Euler’s theorem gives,

• For one component system= G/n, Gibbs 

free energy per mole
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Quiz (exercise 1.14)

• Show that for a one component p-V-n system

• where v is the volume per mole.  [Hint: show 
that                            , where s is the entropy 
per mole.
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solution

• The Gibbs-Duhem Equation,

• Implies, for one component, 

• Hence, 
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