Mathematical Modeling of Chemical Processes Part II

Continuous Stirred-Tank Reactor (CSTR)

Continuous Stirred-Tank Reactor (CSTR)

Assumptions

- neglected heat capacity of inner walls of the reactor, constant density and specific heat capacity of liquid,
- constant reactor volume, constant overall heat transfer coefficient, and
- constant and equal input and output volumetric flow rates.
- the reactor is well-mixed.

Control loop for the Stirred Heating Tank

Mathematical model of a thermocouple

a) bare thermocouple

b) thermocouple with protect jacket

Blending system Control Method

Modeling the pneumatic control valve

• first order element

$$\tau \frac{dy(t)}{dt} + y(t) = Kx(t)$$

Transfer function

$$G(s) = \frac{Y(s)}{X(s)} = \frac{K}{\tau s + 1}$$

• Step input x(t) = MU(t)

$$Y(s) = G(s)X(s) = \frac{K}{\tau s + 1} \cdot \frac{M}{s}$$
$$y(t) = \mathscr{D}^{-1} \left[\frac{K}{\tau s + 1} \cdot \frac{M}{s} \right] = KM \left(1 - e^{-\frac{t}{\tau}} \right)$$

- When *M* =1 (unit step input),

$$y(t) = K \left(1 - e^{-\frac{t}{\tau}} \right)_{t=\tau} = 0.632$$

Second order element

$$\tau_m^2 \frac{d^2 y(t)}{dt^2} + 2\zeta \tau_m \frac{dy(t)}{dt} + y(t) = x(t)$$

$$G(s) = \frac{Y(s)}{X(s)} = \frac{1}{\tau_m^2 s^2 + 2\zeta \tau_m s + 1}$$

$$= \frac{\omega_0^2}{s^2 + 2\zeta \omega_0 s + \omega_0^2}$$

• Given a step input x(t) = MU(t),

$$Y(s) = G(s)X(s) = \frac{\omega_0^2}{s^2 + 2\zeta\omega_0 s + \omega_0^2} \cdot \frac{M}{s}$$

 Use notations in Chapter 4, and let *M*=1 (unit step)

$$C(s) = \frac{\omega_n^2}{s\left(s^2 + 2\zeta\omega_n s + \omega_n^2\right)}$$

Factoring the denominator

$$C(s) = \frac{\omega_n^2}{s\left(s + \zeta\omega_n - \omega_n\sqrt{\zeta^2 - 1}\right)\left(s + \zeta\omega_n + \omega_n\sqrt{\zeta^2 - 1}\right)}$$

• Case A damping ratio equals unity $\zeta = 1$

$$C(s) = \frac{\omega_n^2}{s(s + \omega_n)^2}$$

Partial fraction expansion

$$C(s) = \frac{K_1}{s} + \frac{K_2}{\left(s + \omega_n\right)^2} + \frac{K_3}{\left(s + \omega_n\right)}$$
$$= \frac{1}{s} + \frac{-\omega_n}{\left(s + \omega_n\right)^2} + \frac{-1}{\left(s + \omega_n\right)}$$

The time domain responses of output

$$c(t) = 1 - \omega_n t e^{-\omega_n t} - e^{-\omega_n t}$$

• Case B damping ratio greater than unity $\zeta > 1$

$$C(s) = \frac{K_1}{s} + \frac{K_2}{\left(s + \zeta \omega_n - \omega_n \sqrt{\zeta^2 - 1}\right)} + \frac{K_3}{\left(s + \zeta \omega_n + \omega_n \sqrt{\zeta^2 - 1}\right)}$$

The time domain responses of output

$$c(t) = 1 + \left[2\left(\zeta^{2} - \zeta\sqrt{\zeta^{2} - 1} - 1\right) \right]^{-1} e^{-\left(\zeta - \sqrt{\zeta^{2} - 1}\right)\omega_{n}t} + \left[2\left(\zeta^{2} + \zeta\sqrt{\zeta^{2} - 1} - 1\right) \right]^{-1} e^{-\left(\zeta + \sqrt{\zeta^{2} - 1}\right)\omega_{n}t}$$

• Case C damping ratio less than unity ζ < 1

Let $\zeta = \cos \alpha$, and therefore $\sqrt{1 - \zeta^2} = \sin \alpha$

Partial fraction expansion

$$C(s) = \frac{1}{s} + \frac{e^{-j\alpha}}{2j\sin\alpha} \left(s + \zeta \omega_n - j\omega_n \sqrt{1 - \zeta^2} \right)^{-1} - \frac{e^{-j\alpha}}{2j\sin\alpha} \left(s + \zeta \omega_n + j\omega_n \sqrt{1 - \zeta^2} \right)^{-1}$$

The time domain responses of output

$$c(t) = 1 - \frac{e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \sin\left(\omega_n \sqrt{1 - \zeta^2} t + \alpha\right)$$

Step responses of a second order element over damped $\zeta \ge 1$

Step responses of a second order element under damped $\zeta < 1$

Second order underdamped response specifications

Performance specifications of a second-order system

- Let $\frac{dc(t)}{dt} = 0$
- We have $\omega_n \sqrt{1-\zeta^2} t = 0, \pi, 2\pi \cdots$
- therefore $c_{\max}(t) = 1 - \frac{e^{-\zeta \omega_n t}}{\sqrt{1 - \zeta^2}} \sin(\pi + \alpha)$ $= 1 + \exp\left(\frac{-\zeta \pi}{\sqrt{1 - \zeta^2}}\right)$

Performance specifications of a second-order system

• Peak time T_p , the time required to reach the first peak π

$$T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

 Percent overshoot, %OS is the amount that the waveform overshoots the final steady-state

$$%OS = \exp\left(\frac{-\zeta\pi}{\sqrt{1-\zeta^2}}\right)$$

Performance specifications of a second-order system

• Settling time T_s , the time required for damped oscillations to reach and stay within $\pm 2\%$ of the steady-state (final) value

$$T_s = \frac{4}{\zeta \omega_n}$$

Rise time T_r is the time required for the waveform to go from 0.1 to 0.9 of the final value

Location of the Roots in the s-plane and the Transient Response

- Proportional element
 It is a step with *KM* as its magnitude
- Integral element It is a ramp at the slop of KM/τ_i
- Differential element It is a impulse
- Delay element

It is a step after a time delay of τ

Development of Empirical Dynamic Models from Step Response Data

Higher order system and dead time

Higher order system and dead time

Approximate using first-orderplus-time-delay model

- The response attains 63.2% of its final response at one time constant ($t = \tau + \theta$)
- The line drawn tangent to the response at maximum slope ($t = \theta$) intersects the 100% line at ($t = \tau + \theta$).
- K is found from the steady state response for an input change magnitude *M*. The step response is essentially complete at *t* = 5*τ*.

Approximate using first-orderplus-time-delay model

Time Constant

Time Constant

Sundaresan and Krishnaswamy's

Inflection point of the process reaction curve is too arbitrary and difficult to determine when data is noisy

- Step 1 take 35.3% response time t₁
- Step 2 take 85.3% response time t_2
- Substitute into the equations

$$\theta = 1.3t_1 - 0.29t_2$$

$$\tau = 0.67(t_2 - t_1)$$

Time Constant

In general, a better approximation to an experimental step response can be obtained by fitting a second-order model to the data

$$G(s) = \frac{K}{(\tau_1 s + 1)(\tau_2 s + 1)}$$

The larger of the two time constants, τ_1 , is called the dominant time constant

- Two limiting cases:
 - $-\tau_1/\tau_2 = 0$, where the system becomes first order, and,

- $\tau_1/\tau_2 = 1$, the critically damped case ($\zeta = 1$)

- Determine t_{20} and t_{60} from the step response.
- Find ζ and t_{60} / τ from Figure 14.
- Find t_{60} / τ from Figure 14 and then calculate τ (since t_{60} is known).

For unit step input

$$G(s) = \frac{C(s)}{R(s)} = \frac{C(s)}{\frac{1}{s}} = sC(s)$$

Assume c(t) takes the form,

$$c(t) = c_{ss} + K_1 e^{-at} + K_2 e^{-bt} + \cdots$$

where c_{ss} is the final-value of c(t)

Time (sec)	c(t)	$\hat{c}(t)$ (Model fit)	error $= c(t)$ -fit of $\hat{c}(t)$
0	0	0	0
0.2000	0.1219	0.3994	-0.2775
0.4000	0.3374	0.6393	-0.3019
0.6000	0.5372	0.7833	-0.2462
0.8000	0.6916	0.8699	-0.1783
1.0000	0.8009	0.9218	-0.1210
1.2000	0.8743	0.9531	-0.0787
1.4000	0.9220	0.9718	-0.0498
1.6000	0.9523	0.9831	-0.0308
1.8000	0.9711	0.9898	-0.0187
2.0000	0.9826	0.9939	-0.0112
2.2000	0.9897	0.9963	-0.0067
2.4000	0.9939	0.9978	-0.0039
2.6000	0.9964	0.9987	-0.0023
2.8000	0.9979	0.9992	-0.0013
3.0000	0.9988	0.9995	-0.0008
3.2000	0.9993	0.9997	-0.0004
3.4000	0.9996	0.9998	-0.0002
3.6000	0.9998	0.9999	-0.0001
3.8000	0.9999	0.9999	-0.0001
4.0000	0.9999	1.0000	0.0000
4.2000	1.0000	1.0000	0.0000
4.4000	1.0000	1.0000	0.0000
4.6000	1.0000	1.0000	0.0000
4.8000	1.0000	1.0000	0.0000
5.0000	1.0000	1.0000	0.0000

Table 4.1. Transient Response of Eq. (4.51) to a Unit Step Input to Obtain the Theoretical Value of c(t), the Model Fit Data $\hat{c}(t)$, and the Error between the Theoretical Value of c(t) and the Model Fit Data

Figure 4.10 Transient response of the control system whose transfer function is given by Eq. (4.51) to a unit step input, and a model fit $\hat{c}(t)$.

Step 1: Least square fit first term

$$c(t) - c_{ss} \approx K_1 e^{-at}$$

$$\log(c(t) - c_{ss}) \approx \log K_1 - at \log e$$
$$\approx \log K_1 - 0.4343 at$$

The intercept is $\log K_1$ The slope is0.4343a

 Step 2: Subtract the line fitted from the experimental data

$$\log(c(t) - c_{ss}) - \log(K_1 e^{-at}) \approx \log K_2 - 0.4343 bt$$

The intercept is $\log K_2$ The slope is0.4343b

Step 3: Adjustment to have c(0) = 0,

$$adjustment = -\frac{1 - K_1 - K_1}{2} = ad$$

- Let
$$K'_{1} = K_{1} + ad$$

 $K'_{2} = K_{2} + ad$

- Now we have,

$$c(t) = c_{ss} + K_{1}'e^{-at} + K_{2}'e^{-bt}$$

Time Responses Using State Variable Method

For non zero second order system,

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Divide s² on both numerator and denominator,

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2 s^{-2}}{(s^2 + 2\zeta\omega_n s + \omega_n^2)s^{-2}}$$
$$= \frac{\omega_n^2 s^{-2}}{1 + 2\zeta\omega_n s^{-1} + \omega_n^2 s^{-2}}$$

Time Responses Using State Variable Method

• Define,

$$E(s) = \frac{R(s)}{1 + 2\zeta \omega_n s^{-1} + \omega_n^2 s^{-2}}$$

• Therefore,

$$C(s) = \omega_n^2 s^{-2} E(s)$$
$$E(s) = R(s) - 2\zeta \omega_n s^{-1} E(s) + \omega_n^2 s^{-2} E(s)$$

Time Responses Using State Variable Method

The state-variable signal-flow graph,

$$\ddot{c}(t) + 4\dot{c}(t) + 3c(t) = r(t)$$

• Laplace transform,

$$\frac{C(s)}{R(s)} = \frac{1}{s^2 + 4s + 3}$$

$$= \frac{s^{-2}}{1 + 4s^{-1} + 3s^{-2}}$$

$$E(s) = \frac{R(s)}{1 + 4s^{-1} + 3s^{-2}}$$

$$C(s) = s^{-2}E(s)$$

$$E(s) = R(s) - 4s^{-1}E(s) - 3s^{-2}E(s)$$

• then

Figure 2.39 State-variable diagram for system where $C(s)/R(s) = 1/(s^2 + 4s + 3)$.

- Quiz 15 min
- Use Mason's theory to find $X_1(s)$ and $X_2(s)$

Figure 2.40 State-variable signal-flow graph corresponding to the state-variable diagram of Figure 2.39.

$$X_{1}(s) = \frac{s^{-1}(1+4s^{-1})x_{1}(0)}{\Delta} + \frac{s^{-2}x_{2}(0)}{\Delta} + \frac{s^{-2}R(s)}{\Delta}, \qquad (2.287)$$
$$X_{2}(s) = \frac{-3s^{-2}x_{1}(0)}{\Delta} + \frac{s^{-1}x_{2}(0)}{\Delta} + \frac{s^{-1}R(s)}{\Delta}, \qquad (2.288)$$

where

$$\Delta = 1 - (-4s^{-1} - 3s^{-2}) = 1 + 4s^{-1} + 3s^{-2}.$$
 (2.289)

Simplifying Eqs. (2.287)-(2.289), we obtain the following pair of equations:

$$X_1(s) = \frac{s+4}{s^2+4s+3}x_1(0) + \frac{1}{s^2+4s+3}x_2(0) + \frac{R(s)}{s^2+4s+3},$$
 (2.290)

$$X_2(s) = \frac{-3}{s^2 + 4s + 3} x_1(0) + \frac{s}{s^2 + 4s + 3} x_2(0) + \frac{sR(s)}{s^2 + 4s + 3}.$$
 (2.291)

These two equations can be put into the following form:

$$\begin{bmatrix} X_1(s) \\ X_2(s) \end{bmatrix} = \frac{1}{(s+1)(s+3)} \begin{bmatrix} s+4 & 1 \\ -3 & s \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} + \begin{bmatrix} \frac{1}{(s+1)(s+3)} \\ \frac{s}{(s+1)s+3)} \end{bmatrix} R(s).$$
(2.292)

From Eq. (2.292), we can obtain the state transition matrix by taking the inverse Laplace transform. It is assumed in the following solution that r(t) = U(t) and R(s) = 1/s:

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} 1.5e^{-t} - 0.5e^{-3t} & 0.5e^{-t} - 0.5e^{-3t} \\ -1.5e^{-t} + 1.5e^{-3t} & -0.5e^{-t} + 1.5e^{-3t} \end{bmatrix} \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} + \begin{bmatrix} 0.33U(t) - 0.5e^{-t} + 0.167e^{-3t} \\ 0.5e^{-t} - 0.5e^{-3t} \end{bmatrix}, \text{ for } t \ge 0.$$
(2.293)

Therefore, the state transition matrix is given by

$$\mathbf{\Phi}(t) = \begin{bmatrix} 1.5e^{-t} - 0.5e^{-3t} & 0.5e^{-t} - 0.5e^{-3t} \\ -1.5e^{-t} + 1.5e^{-3t} & -0.5e^{-t} + 1.5e^{-3t} \end{bmatrix}, \quad t \ge 0.$$
(2.294)