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Continuous Stirred-Tank Reactor
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Continuous Stirred-Tank Reactor

(CSTR)

Assumptions

neglected heat capacity of inner walls of
the reactor, constant density and specific
heat capacity of liquid,

constant reactor volume, constant overall
heat transfer coefficient, and

constant and equal input and output
volumetric flow rates.

the reactor is well-mixed.



Control loop for the Stirred
Heating Tank
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Mathematical model of a
thermocouple
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a) bare thermocouple b) thermocouple with protect jacket



Blending system Control Method
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Modeling the pneumatic control
valve

=
Actuator
spring

Ps Diaphragm

Qe

\

(3-15 psig) LU E valve position
Valve pressure =  indicator
indicator
Valve
— plug
P T stem
Actuating | Valve body -
signal q
Flow Valve plug
direction > U%ve seat ——

Z




Element Time Responses

* first order element
ay(t
. y(t)

- y(1) = Kx(¢)
dt
— Transfer function
G(s) = Y(s) K

X(s) o+



Element Time Responses

« Step input x(t) = MU(t)
K .M
w+1 s

y() =L 1[ R -M}zK]W(l—e;]

w+1 s

Y(s)=G(s)X(s) =

— When M =1 (unit step input),

Y(t) = K(l — 87] =0.632



Element Time Responses

Tangent to y(¢) at¢ = 0O




Element Time Responses

« Second order element
2
I SOER)
Y(s) _ 1
X(s) t2s*+2lr, s+1

G(s) =

2
a8

s’ +2w,s + w;



Second order element

* Given a step input x(t) = MU(t),
w; M
S2+2§G)OS+0)§. S
* Use notations in Chapter 4, and let V=1
(unit step)

Y(s)=G(s)X(s) =

2
0

Cle)= S(S2 + 24’;)ns + a),f)




Second order element

» Factoring the denominator

c= (S+§a) —@ ¢’ XS+§(0 +@ ¢ )

« Case A damping ratio equals unity =1

C(s) = “,

s(s+w,)



Second order element

« Partial fraction expansion

K K K
C — 1 2 3
(5) s+@+%f+@+@)

:l+ —0, —1
s (s+o,) (s+o,)

 The time domain responses of output

ct)y=l-w te ™ —e™



Second order element

« Case B damping ratio greater than
unity £> 1

C(s) = ud +

K, - K, \
s (S+§’a)n—a)n\/é’z—l)_i_(S+§’a)n+a)nw/§2—l)

sy = b [2(5 —o e -1- 1) [2( + A JET -1 1) A
§ (S+§a) a)\/—) (S+§a) +a)\/—)




Second order element

 The time domain responses of output
- || S R (N VE P
c(t):1+_2[§2—§\/.§’2—1—1)_ o (e
N \FL (1),
o e KA

« Case C damping ratio less than unity £
<1

Let ¢ =cosa, and therefore \/ 1-¢* =sina




Second order element

« Partial fraction expansion

)=+ 54w, - jo1-C7)

s 2jsina

" (or o, + jo 1)

2jsina

 The time domain responses of output

\/liwt sm( \/1 t+a)

c(t)=1-



Step responses of a second
order element over damped {21
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Step responses of a second order
element under damped ¢ <1
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Second order underdamped
response specifications
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Performance specifications of a
second-order system

* Let de(t) _,
dt
* We have
@, 1-%t=0,7,27-
* therefore oSt
¢, (H)=1- sin(7 + a)
1-¢°




Performance specifications of a
second-order system

* Peak time T, the time required to reach
the first peak

JC
T —
T o147

 Percent overshoot, %0S is the amount
that the waveform overshoots the final

steady-state

%0S =exp
J1=¢7




Performance specifications of a
second-order system

» Settling time T, the time required for
damped oscillations to reach and stay
within =2% of the steady-state (final)
value 4

I=—-
o,

* Rise time T, is the time required for the
waveform to go from 0.1 to 0.9 of the
final value



Location of the Roots In the
s-plane and the Transient
Response
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Element Time Response

Proportional element
It is a step with KM as its magnitude

Integral element

It is a ramp at the slop of KM/7;
Differential element

It is a impulse

Delay element
It is a step after a time delay of ¢



Development of Empirical
Dynamic Models from Step
Response Data

> M M —»
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Higher order system and dead time



Higher order system and dead
time
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Approximate using first-order-
plus-time-delay model

 The response attains 63.2% of its final
response at one time constant (t= + 6)

* The line drawn tangent to the response
at maximum slope (f = 6) intersects the
100% line at (t= 7 +6).

 Kis found from the steady state
response for an input change magnitude

M. The step response is essentially
complete at t=57.



Approximate using first-order-
plus-time-delay model

m(t)
c(t)

It 7 3¢ k=AciAm

0.632AcC




F-16 XL Roll Mode Time Constant
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F-16 XL Roll Mode Time Constant
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Sundaresan and Krishnaswamy’s

Inflection point of the process reaction
curve is too arbitrary and difficult to
determine when data is noisy

« Step 1 take 35.3% response time ¢,
« Step 2 take 85.3% response time ¢,
» Substitute into the equations

=13t —0.29¢,
r=0.67(t,-1,)
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Second-order Model

In general, a better approximation to an

experimental step response can be
obtained by fitting a second-order

model to the data
K
(TIS + 1)(2'25 + 1)
The larger of the two time constants, 7,
is called the dominant time constant

G(s) =



Second-order Model

Two limiting cases:

— 74/75 =0, where the system becomes first
order, and,

— 14745 =1, the critically damped case ({=1)

Determine t,;, and f;, from the step
response.

Find{and t;, /7 from Figure 14.

Find £;, /7 from Figure 14 and then
calculate 7 (since f;, is known).



Second-order Model

t/(ry + 19)



Second-order Model
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Second Order plus Dead Time

« Assumed model:

Ke—eS

G(s)=
(S) 12524—2§rs4—1

If the original process transfer function
contains a time delay

t=t-6
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ESTIMATING SECOND-ORDER DEAD TIME PARAMETERS
FROM UNDERDAMPED PROCESS TRANSIENTS

G. P. RANGAIAH and P. R. KRISHNASWAMY*

Department of Chemical Engineering, National University of Singapore, 10 Kent Ridge Crescent,
Singapore 0511, Singapore

(First received 19 August 1994; revised manuscript received 5 September 1995; accepted 26 September 1995)

Abstract—Two simple methods for determining second-order dead time model parameters from under-
damped process transients are presented. One of the methods relies on three characteristic points of the
oscillatory step response curve. These three points attempt to minimize the integral of absolute error
between process and model responses. The other method is based on just two points of the step response.
Illustrative examples show that the proposed techniques allow rapid and reliable estimate of parameters.
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Fig. 1. Underdamped process response and second order dead time approximation.



Locate yp from the

actual process response

4

Estimate £ from eq. (2)

1}

Compute y from eq. (3a) and read off
1

the corresponding t1 from the actual response, y(t)

|

Compute t, from eq. (3c¢)

i
3-Point 2-Point
Method Method
Estimate v, from eq. (4a) and Read off tp corresponding
read off the corresponding t2 to yp from the y(t) curve

from the y(t) curve

| i,

Compute Ez from eq. (4c) Compute Ep from eq. (7b)
Evaluate T and 6 from eqs. Estimate T and 6 from eqgs.
(5) and (6) respectively (8) and (6) respectively

Fig. 3. Steps in the application of parameter estimation methods.



174 Ind. Eng. Chem. Res. 1994, 33, 174-176

Estimation of the Underdamped Second-Order Parameters from the
System Transient

Chi-Tsung Huang’ and Chin-Jui Chou

Department of Chemical Engineering, Tunghai University, Taichung 40704, Taiwan, ROC

A simple calculation method was presented in this study for estimating the parameters of the
underdamped second-order-plus-dead-time model from the system transient. Several estimation
techniques without graphic aid or computer searching were recommended on the basis of the value
of the maximum overshoot. The model parameters were estimated in the range of 0 < £ <1 using
only a minimal number of data points along the step-response curve. This method was confirmed
by the observed results as being both more reliable and easier to apply than currently available
approaches for model parameter estimates.

1
2

lnz(yp—l)
_722 +ln2(yp —1)




« According to the time response of 2"d order

system,
-1 \/1_4/2 ]

1 G
=1- Xp| — t
R i
sin[2 tan " 1-¢" ]

4

* Find corresponding t; from the time
response, then calculate,

t = tan



* Finding y, according to

v, =1.8277-1.7652¢ +0.6188¢

* Find corresponding t, from the time
response, then calculate,

f =3.4752-1.3702¢ +0.1930¢>

* Find 1, 0 using,



Modeling Second-order Through
Least Square Fit

* For unit step input
C(s) _ C(s)
R(s) 1

S

G(s) = =sC(s)

 Assume c(t) takes the form,

ct)=c +Ke " +K,e" +--

where c . is the final-value of c(t)



Table4.1. Transient Response of Eq.(4.51) to a Unit Step Inputto Obtain the Theoretical Value of ¢(t), the
Model Fit Data ¢&(t), and the Error between the Theoretical Value of ¢(t) and the Model Fit Data

(1)
Time (sec) (1) (Model fit) error = c(t)—fit of ¢(7)

0 0 0 0
0.2000 0.1219 0.3994 —0.2775
0.4000 0.3374 0.6393 —0.3019
0.6000 0.5372 0.7833 —0.2462
0.8000 0.6916 0.8699 —0.1783
1.0000 0.8009 0.9218 —0.1210
1.2000 0.8743 0.9531 —0.0787
1.4000 0.9220 0.9718 —0.0498
1.6000 0.9523 0.9831 —0.0308
1.8000 0.9711 0.9898 —0.0187
2.0000 0.9826 0.9939 -0.0112
2.2000 0.9897 0.9963 —0.0067
2.4000 0.9939 0.9978 : —0.0039
2.6000 0.9964 0.9987 —0.0023
2.8000 0.9979 0.9992 —0.0013
3.0000 0.9988 0.9995 —0.0008
3.2000 0.9993 0.9997 —0.0004
3.4000 0.9996 0.9998 —0.0002
3.6000 0.9998 0.9999 —0.0001
3.8000 0.9999 0.9999 —0.0001
4.0000 0.9999 1.0000 0.0000
4.2000 1.0000 1.0000 0.0000
4.4000 1.0000 1.0000 0.0000
4.6000 1.0000 1.0000 0.0000
4.8000 1.0000 1.0000 0.0000

5.0000 1.0000 1.0000 0.0000
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Figure4.10 Transientresponse of the control system whose transfer function is given by Eq. (4.51) to
a unit step input, and a model fit &(t).



Modeling Second-order Through
Least Square Fit

« Step 1: Least square fit first term
c(t)-c, ~Ke™

log(c(t) —C,, ) ~log K, —atloge
~log K, —0.4343at

The interceptis log K,
The slope is 0.4343a



Modeling Second-order Through
Least Square Fit

« Step 2: Subtract the line fitted from the
experimental data

log(c(t)—c,, ) log(Kle_‘” ) ~log K, —0.4343bt

The interceptis log K,
The slope is 0.4343bH



Modeling Second-order Through
Least Square Fit

« Step 3: Adjustment to have c¢(0) =0,

1-K, - K
adjustment = — 12 L =ad
—Let .
K, =K, +ad
K,=K, +ad

— Now we have,

- " b
c(t)y=c +Ke“+K,e"”



Time Responses Using State
Variable Method

* For non zero second order system,

Co__ o
R(s) s°+2lw s+’

* Divide s? on both numerator and
denominator,

C(s) w5~
R(s) (s’+2lws+w>)s™
a),fs_2

= 1 2 2
1+28w, s + ;s



Time Responses Using State
Variable Method

* Define,
R(s)
1+2lw s~ +w’s”

E(s)=

2

 Therefore,
C(s)=w’sE(s)
E(s)=R(s)-2lw s 'E(s)+ w>s E(s)



Time Responses Using State
Variable Method

The state-variable signal-flow graph,

X5(to) X4(t,)

S-1 S
R(s) E(s) g S w? Cls)
o o) d o)

o wan




« Example

é(t) + 4¢(t) + 3e(t) = r(t)
» Laplace transform,

C(s) @
R(s) s + 4s @

-2
S

B 1+ 4s™" + 3s57°

* and C(s)=s"E(s)

E(s)=R(s)—4s"'E(s)—3s"E(s)



x2(0) M C(s)=s"E(s)

5 ) —/4S_1E (s)=3sE(s)

/

Figure 2.39 State-variable diagram for system where C(s)/R(s) = 1/(s® + 4s + 3).



Quiz Answer
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Y
Xz(S) ¢ % E
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2.39, .11
e X1 :k1A1 S
1 ; 3 5 R(s) A A
(T4~ 10 s (0) §TR(3)
X e : 2.287
1) = g b (2.287)
=3y ) s o) TR
X = 3 2.288
2(s) ~ g o e o ( )

where

A=1—(—4s"'=35s5"2) =1 et 352

(2.289)




Figure 2.40 State-variable signa
2.39.

—1 -1 -2 )/
Xl(s):s (1 +4s )x1(0)+s xA0) (2.287)

—35 2x;(0).
X -+

Xo(s) =

(2.288)

where

Al U0 )L 18 432 (2.289)



Simplifying Egs. (2.287)—(2.289), we obtain the following pair of equations:

(2.290)

(2.291)

1
/] 1 O

s][fcigo;] 4 [ C+DOHI) g, 2292)
(s+ 1)s+3)

[Xl(s)] e
Xo(8) | (s+D(s+3)

From Eq. (2.292), we can obtain the state transition matrix by taking the inverse

nsform. It is assumed in the following solution that r(z) = U(¢) and
[xl(t)] | 15e7"—0.5e7  0.5¢7 —0.5¢ [xl(O)]
xa)] | =157+ 1.5¢7  —0.5e" + 1.5~ |Lx2(0)

. = -3t
+[0.330(:) 0.5¢™" +0.167¢ ] % h (2.293)

0.5¢~' —0.5¢
Therefore, the state transition matrix is given by

1 50 05¢ 2% 0385 08"

§) ==
o) [—1.5e“+1.5e-3' 0.5 L18e™

], £>0. (2.294)



