
Mathematical Modeling of 
Chemical Processes

Part II



Continuous Stirred-Tank Reactor 
(CSTR)



Continuous Stirred-Tank Reactor 
(CSTR)

Assumptions 
– neglected heat capacity of inner walls of 

the reactor, constant density and specific 
heat capacity of liquid, 

– constant reactor volume, constant overall 
heat transfer coefficient, and 

– constant and equal input and output 
volumetric flow rates. 

– the reactor is well-mixed.



Control loop for the Stirred 
Heating Tank



Mathematical model of a 
thermocouple

q0
qj

qiqi

q0

a) bare thermocouple b)  thermocouple with protect jacket



Blending system Control Method



Modeling the pneumatic control 
valve
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Element Time Responses 
• first order element

– Transfer function
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Element Time Responses
• Step input x(t) = MU(t)

–When M =1 (unit step input),
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Element Time Responses



Element Time Responses
• Second order element
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Second order element
• Given a step input x(t) = MU(t),

• Use notations in Chapter 4, and let M=1 
(unit step)
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Second order element
• Factoring the denominator

• Case A damping ratio equals unity z = 1
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Second order element
• Partial fraction expansion

• The time domain responses of output
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Second order element
• Case B damping ratio greater than 

unity z > 1
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Second order element
• The time domain responses of output

• Case C damping ratio less than unity z
< 1

Let
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Second order element
• Partial fraction expansion

• The time domain responses of output
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Step responses of a second 
order element over damped z ≥1 

 



Step responses of a second order 
element under damped z <1

 



Second order underdamped 
response specifications



Performance specifications of a 
second-order system

• Let 

• We have

• therefore
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Performance specifications of a 
second-order system

• Peak time Tp, the time required to reach 
the first peak

• Percent overshoot, %OS is the amount 
that the waveform overshoots the final 
steady-state
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Performance specifications of a 
second-order system

• Settling time Ts , the time required for 
damped oscillations to reach and stay 
within±2% of the steady-state (final) 
value

• Rise time Tr is the time required for the 
waveform to go from 0.1 to 0.9 of the 
final value
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Location of the Roots in the 
s-plane and  the Transient 

Response
s-plane

z  = 0

0 < z < 1

z ≥ 1

s

s < 0
s > 0



Element Time Response
• Proportional element

It is a step with KM as its magnitude
• Integral element

It is a ramp at the slop of KM/ti
• Differential element

It is a impulse
• Delay element

It is a step after a time delay of t



Development of Empirical 
Dynamic Models from Step 

Response Data

Higher order system and dead time



Higher order system and dead 
time



Approximate using first-order-
plus-time-delay model

• The response attains 63.2% of its final 
response at one time constant (t = t + q )

• The line drawn tangent to the response 
at maximum slope (t = q) intersects the 
100% line at (t = t +q ). 

• K is found from the steady state 
response for an input change magnitude 
M.  The step response is essentially 
complete at t = 5t.



Approximate using first-order-
plus-time-delay model

q

Inflection point



F-16XL Roll Mode Time Constant

Inflection point



F-16XL Roll Mode Time Constant



Sundaresan and Krishnaswamy’s

Inflection point of the process reaction 
curve is too arbitrary and difficult to 
determine when data is noisy

• Step 1 take 35.3% response time t1
• Step 2 take 85.3% response time t2
• Substitute into the equations
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F-16XL Roll Mode Time Constant

35.3%

85.3%

t1 t2

63.2%



Second-order Model
In general, a better approximation to an 
experimental step response can be 
obtained by fitting a second-order 
model to the data 

The larger of the two time constants, t 1, 
is called the dominant time constant
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Second-order Model
• Two limiting cases: 
– t 1/t 2 = 0, where the system becomes first 

order, and, 
– t 1/t 2 = 1, the critically damped case (z =1)

• Determine t20 and t60 from the step 
response.

• Findζand t60 /t from Figure 14.
• Find t60 /t from Figure 14 and then 

calculate t (since t60 is known).



Second-order Model

 

t20 t60



Second-order Model

 



Second Order plus Dead Time
• Assumed model:

If the original process transfer function 
contains a time delay
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ESTIMATING SECOND-ORDER DEAD TIME PARAMETERS 
FROM UNDERDAMPED PROCESS TRANSIENTS 
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Abstract-Two simple methods  for determining second-order dead time model parameters  from under- 
damped process transients  a re  presented. One of the methods relies  on three characteris tic points  of the 
oscilla tory step response  curve. These  three  points  a ttempt to minimize the  integral of absolute  e rror 
between process and model responses. The  other method is  based on jus t two points  of the step response. 
Illus tra tive  examples show tha t the proposed techniques a llow rapid and re liable  estimate  of parameters . 

INTRODUCTION THE METHOD 
The open-loop dynamics of chemical processes  a re  
usually overdamped in nature . However, when the  
processes  a re  under closed-loop control (e ither cas- 
cade  or s imple feedback control), oscilla tory res- 
ponses  could be encountered. Thus reliable  and 
simple methods  a re  needed to identify the  parameters  
of an oscilla tory closed-loop response  in order to 
e ither design the  master controller of a  cascade  loop 
or to characte rize  a  given closed-loop behavior. 

The dynamics of an oscilla tory system, with gain 
normalized to unity, could be modeled by 

Consider an observed oscilla tory s tep response  y(t) 
representing an unknown process . It is  assumed tha t 
the  s tep response  can be approximated by a  second- 
order underdamped model with dead time. The pres- 
ent approach involves allowing y(t) and its  model 
approximation j(t) to intersect a t three  points , name- 
ly, (tl,yl), (tZ,y2), and (t3,y3) as  shown in Fig. 1. It 
may be noted tha t no more  than three  points  a re  
needed to es timate  the  three  unknown parameters  
(f, [and 0). The responses  in Fig. 1 a re  assumed to be 
normalized a fte r obtaining the  model gain from the  
final s teady-s ta te  value of the  process  response . The 
objective is  to loca te  the  three  intersecting points  so 
tha t the  integral of absolute  e rror (IAE), represented 
by the  shaded a rea  in Fig. 1, is  minimized. The IAE is  
thus  taken as  a  measure  of closeness  of the  model fit. where  e  < 1. Methods  have been proposed in the  pas t 

for estimating the  parameters  of this  model from s tep 
response . Some of these  methods  [e .g. Meyer e t a l. 
(1967) and Sundaresan e t a l. (1978)] involve graphica l 
procedures  and a re  not amenable to quick on-line 
estimation. Some recent methods  (Huang and 
Clements , 1982; Huang and Chou, 1994) overcome 
this  problem. However, the  parameter estimation is  
based on arbitrarily se lected points  (up to five points) 
from the  s tep response  curve. No justification, theor- 
e tical or otherwise , is  available for choice  of these  
points . These  methods  a re  thus  empirical in nature . 

The purpose  of this  note  is  there fore  to analyze the  
parameter estimation problem using a  quantita tive 
criterion of performance and to recommend the  re- 
quired points  on a  rational basis . The analysis  will 
reveal tha t in fact no more  than three  characteris tic 
points  a re  needed for excellent parameter es timates . 
Thus the  arbitrariness  involved in the  earlier methods  
will be removed and the  number of points  required 
will be reduced to the  minimum. At the  same time the  
accuracy in parameter estimation will be improved. 

*Corresponding author. 

The range of interest here  is  limited to 0.4 < f < 0.8 
as  this  range is  often considered suitable  for specifying 
des ired control system response  (Seborg e t a l., 1989). 
Outs ide  this  range, the  following methods  could be 
used: (i) for [ < 0.4 (i.e ., when oscilla tions a re  signifi- 
cant) the  method of Chen (1989) may be used; (ii) for 
e  > 0.8 (i.e ., when the  response  is  s luggish), the  
method of Rangaiah and Krishnaswamy (1994) is  
recommended. 

In order to minimize IAE, an express ion for it is  
firs t derived which is  then differentia ted with respect 
to f, [ and 6, and the  derivatives  se t equal to ze ro. 
Numerical solution of the  three  resulting express ions  
yield y, , y,, and y3 as  well as  the  corresponding tl, t2, 
and t3, for each se t of ‘? , [ and e^ considered. As has  
been observed earlier (Huan_g and Clements , 1982), y,, 
~9, and y3 a re  functions of c only, while  tl, t2, and t3 
depend on F, % and 6. The results  obtained a re  plotted 
in Fig. 2 (solid lines) in te rms of y, , y2, and y3 versus  t 
Deta ils  of the  express ions  for IAE and the  procedure  
for IAE minimization a re  given in the  Appendix. 

Many investigators  consider the  point of inflection 
[e .g., Sten (1970) and Huang and Clements  (1982)] 
and the  firs t peak [e .g., Chen (1989) and Huang 

1149 
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11 ti 12 13 tp 

Time 

Fig. 1. Underdamped process response and second order dead time approximation. 

a6 a7 0.8 

% 

Fig. 2. f versus y,, ~2, ~3. yi, and yp. 

and Chou (1994)] as  important characteris tics  of a  
second-order underdamped response . As these  char- 
acteris tic points  can be defined analytically, values 
corresponding to the  inflection point yi and the  firs t 
peak y, a re  a lso compared in Fig. 2. For the  [ range 
covered (0.4-0.8), the  results  reveal an interesting co- 
incidence: yi and y, agree  closely with yl and y3, 
respectively. Thus, with only a  marginal loss  of accu- 
racy, yi and y3 could be replaced by yi and y,, respec- 
tively. In other words , the  proposed estimation 
method based on IAE minimization now requires  the  
model curve to agree  with the  process  response  a t yi, 
y, and y, ra ther than a t yi , y2 and y,. This  observa- 
tion is  made use  of in the  following development. 

Estimation 0s  c 
The parameter estimation problem can be signifi- 

cantly s implified if 4 can be obtained right in the  
beginning. As the  firs t peak can be directly read from 
the  actual response , [ is  firs t es timated [following 
Huang and Chou (1994)] by 

[ 
WY, - 1) 

1 

l/2 
r^= 

W + ln2(y, - 1) (2) 

Now tha t [is  available , the  task reduces  to a  two- 
parameter problem of estimating p and e^ so as  to 
achieve a  good model fit. This  requires  use  of two out 
of the  three  chosen points  (namely yi, y, and yp) along 
with the  corresponding time values. Two different 
possibilities  a re  considered: (i) use  (yi, ti) and (y2, tz) 
or (ii) use  (yip ti) and (y,,, tp). 

The firs t choice  (use  of yi and yl) amounts to 
utilizing all the  three  se lected points  for parameter 
estimation (i.e ., use  y, for estimating [, yi and y, for 
estimating T and 8). Hence it is  re fe rred to hereafte r 
as  the  three-point method. In this  method, y, can be 
conveniently observed from the  actual process  re- 
sponse and yi es timated analytically from eq. (3a) as  
described below. Estimation of y2, however, will have  
to depend on an empirical corre la tion based on the  
da ta  (yZ vs t) in Fig. 2. 

In the  second choice , yi and y, a re  used to es timate  
$ and i?. In other words , y2 is  not utilized and hence 
the  method (re fe rred to as  the  two-point method) is  
free  from empiricism. More  interestingly, the  three  
parameters , p, [ and 6 a re  es timated using only 
two points  - inflection point and the  peak. This  is  
possible  because  the  peak in fact provides  two quant- 
ities . One of them is  the  magnitude of the  peak from 
which f is  es timated [eq. (2)]. The other quantity, the  
time where  the  peak occurs , is  used in conjunction 
with the  inflection point to es timate  $ and 6. In the  
following development, both the  methods  will be 
examined. 

Estimation of T and 6 by the three-point method 
This procedure  requires  values of (yi, ti) and ( y2, t2). 

In general, it is  not practica l to read off the  inflection 
point directly from the  actual process  response . 
Hence, an analytical approach is  utilized here  by 
taking advantage of the  fact tha t f is  a lready known. 
Huang and Clements  (1982) have derived an analyti- 
ca l express ion for yi corresponding to a  unit s tep 
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Locate yp from the 

actual process response 

Estimate < from eq. (2) 

Compute y, from eq. (3a) and read off 

the corresponding tl from the actual response, y(t) 

Compute ti from eq. (3cl 

3-Point 
Method i, Zig 

1 

Estimate ya from eq. (4a) and 

read off the corresponding ta 

from the y(t) curve 

1 

Read off tp corresponding 

to yp from the y(t) curve 

I 

Compute ;a from eq. (4~) Compute ts from eq. (7b) 

c) I . A 

Evaluate T and 8 from eqs. Estimate T and 8 from eqs . 

(5) and (6) respectively (81 and (6) respectively 

Fig. 3. S teps  in the  application of parameter estimation methods . 

(three-point method). In te rms of IAE, the  three-point 
method has  a  s light advantage over the  two-point 
method. Estimates  obtained by direct IAE minimiz- 
ation a re  marginally be tte r. The five-point method of 
Huang and Chou (1994) yields parameter es timates  
which a re  comparatively less  accura te  in te rms of IAE, 
particularly when [ is  small. 

Example 2 
This example  considers  a  process  given by 

e -es 
G(s) = (T2 z s + 2cTs + l)(O.lTs + 1)(0.6Ts  + 1)’ 

(10) 

In this  case , the  modeling e rror due to the  minor time 
constants , O.lT and 0.6T, is  grea te r than tha t in the  
previous case . As before  [ is  varied in the  range 
0.4-0.8 with T and 0 fixed a t 1.0 and 0.4, respectively. 
Illustrative results  obtained by various methods  
(Table 2) clearly show tha t the  proposed methods  can 
provide  consistent es timates . The re la tive  accuracy of 
the  various methods  is  s imilar to tha t observed for 
example  1. 

Effect of noise 
As noise is  often present in experimental da ta , the  

methods  under consideration a re  evaluated with re- 
gard to measurement noise introduced a t the  process  
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Estimation of the Under damped Second-Order Parameters from the
System Transient

Chi-Tsung Huang* and Chin-Jui Chou

Department of Chemical Engineering, Tunghai University, Taichung 40704, Taiwan, ROC

A simple calculation method was presented in this study for estimating the parameters of the
underdamped second-order-plus-dead-time model from the system transient. Several estimation
techniques without graphic aid or computer searching were recommended on the basis of the value
of the maximum overshoot. The model parameters were estimated in the range of 0 < £ < 1 using
only a minimal number of data points along the step-response curve. This method was confirmed
by the observed results as being both more reliable and easier to apply than currently available
approaches for model parameter estimates.

Introduction

Chemical processes in the open loop do not usually
respond oscillatorily. However, obtaining an under-
damped model would sometimes be desirable such as in
(i) the closed-loop step response and (ii) the case of cascade
control system with the primary loop cutoff. The dynamics
of an oscillatory system may generally be simplified by
the underdamped second-order-plus-dead-time model as

R(s) TV + 2 T£s + 1

for 0 < £ < 1. Methods have been explored for obtaining
the model parameters from the step-response curve
without computer usage by many authors in previous
literature (Meyer et al., 1967; Sundaresan et al., 1978; Chen,
1989; Seborg et al., 1989). A simple calculation method
was also proposed by Huang and Huang (1993) for
estimating the nonoscillatory process dynamics using eq
1. However, combining the advantages of previous meth-
ods (Seborg et al., 1989; Chen, 1989; Huang and Huang,
1993) was the primary aim of this Research Note so as to
form a simple and reliable way for estimation of the model
parameters in the range of 0 < £ < 1 from the step-response
curve. This technique could be expediently implemented
in a pocket calculator or equally well in a digital computer.

Parameter Estimation

Parameters of the underdamped second-order can be
estimated from the extreme points of the step-response
curve. A typical step-response curve for underdamped
cases is shown in Figure 1. Chen (1989) modified the
technique of Yuwana and Seborg (1982) using five data
from three extreme points, i.e., Cpi, Cmi, CP2, tpi, and tmi
in Figure 1, for estimation of the model parameters. The
advantage of this technique lies in its capability of
obtaining accurate model parameters if the system is quite
oscillatory. However, if Cmi closes to C„ and/or Cp3 closes
to C„, using this method (Chen, 1989) to estimate £ may
possibly result in a significant numerical error. Also, all
of these extremes of the step-response curve may generally
not be found in practical cases. The overshoots and
undershoots for the underdamped second-order system
can be obtained by the following equation (Kuo, 1991):

* To whom correspondence should be addressed.

0888-5885/94/2633-0174$04.50/0

Figure 1. Typical underdamped step-response curve.

overshoot or undershoot = (-l)”™1 exp(-mr£/(l - fV/2)
(2)

where  = 1, 2, 3, etc. The third extreme value ( = 3)
is indicated from eq 2 to be indefinite for £ > 0.4. Such
approaches (Yuwana and Seborg, 1982; Chen, 1989) may
therefore be concluded as being unsuitable for application
toward cases of £ > 0.4. However, values of £ in the range
of 0.4-0.8 are often used for specifying a desired control
system response (Seborg et al., 1989; Ogata, 1990).

A calculation method has recently been recommended
by Huang and Huang (1993) for estimating the second-
order parameters of the nonoscillatory process transient
using four points of step-response data. Extension of this
approach (Huang and Huang, 1993) for underdamped cases
is next delineated. Let t' be the actual time (t) past the
dead time; i.e., t{ = t; - 9 for each i. For a given £ in eq
1 without the dead time ( ), the dimensionless time t'/T
(say ti'/T) can be estimated when the step response before
the rise time attains 10% of its final value. Values of
ti/T, t3'/T, te/T, and W/T for the range of 0.4 < £ < 1.0
are calculated in this investigation. Values of ti'/T are

only functions of £ since the dead time (9) has been shifted
out. These sets of data are then excellently fitted by a

least-squares method as

/x(£) = ^ = 0.451465 + 0.066696£ + 0.013639£2
(3)

SE = 0.008 X 10"3, r = 1.000

&copy; 1994 American Chemical Society
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• According to the time response of 2nd order 
system,

• Find corresponding ti from the time 
response, then calculate,
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• Finding y2 according to

• Find corresponding t2 from the time 
response, then calculate,

• Find t, q using,

( )
( ) tq

tq
/
/

22 -=
-=
tt
tt ii

2
2 6188.07652.18277.1 zz +-=y

2
2 1930.03702.14752.3 zz +-=t



Modeling Second-order Through 
Least Square Fit

• For unit step input

• Assume c(t) takes the form,

where css is the final-value of c(t)
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Modeling Second-order Through 
Least Square Fit

• Step 1: Least square fit first term

The intercept is log K1
The slope is 0.4343a

at
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Modeling Second-order Through 
Least Square Fit

• Step 2: Subtract the line fitted from the 
experimental data

The intercept is log K2
The slope is 0.4343b

( ) ( ) btKeKctc at
ss 4343.0loglog)(log 21 -»-- -



Modeling Second-order Through 
Least Square Fit

• Step 3: Adjustment to have c(0) = 0,

– Let

– Now we have,

adKKadjustment =
--

-=
2

1 11

adKK
adKK
+=

+=

2
'
2

1
'
1

btat
ss eKeKctc -- ++= '

2
'
1)(



Time Responses Using State 
Variable Method

• For non zero second order system,

• Divide s2 on both numerator and 
denominator,

22

2

2)(
)(

nn

n

sssR
sC

wzw
w

++
=

221

22

222

22

21
         

)2()(
)(

--

-

-

-

++
=

++
=

ss
s

sss
s

sR
sC

nn

n

nn

n

wzw
w

wzw
w



Time Responses Using State 
Variable Method

• Define,

• Therefore,
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Time Responses Using State 
Variable Method

The state-variable signal-flow graph,
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• Example

• Laplace transform,

• and
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Quiz Answer
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