Robust Control System

CheEng@TongjiU Min Huang, PhD

Quiz

Find
$$H(s) = \frac{C(s)}{R(s)}$$
, $N(s) = \frac{C(s)}{D(s)}$ and sensitivity $S_{\kappa}^{H(s)}$. What

have you found ?

$$\begin{split} H(s) &= \frac{C(s)}{R(s)} = \frac{G_{c1}(s)G_{c2}(s)KG_{0}(s)}{1 + KG_{c2}(s)G_{0}(s)} \\ N(s) &= \frac{C(s)}{D(s)} = \frac{1}{1 + KG_{c2}(s)G_{0}(s)} \\ S_{K}^{H(s)} &= \frac{\frac{dH(s)}{H(s)}}{\frac{dH(s)}{K}} = \frac{K}{H(s)}\frac{dH(s)}{dK} \\ dH_{K} &= \frac{G_{c1}(s)G_{c2}(s)G_{0}(s)} \end{split}$$

 $\overline{\mathsf{dK}} = \overline{[\mathbf{1} + \mathsf{KG}_{c2}(s)\mathsf{G}_{0}(s)]^{2}}$

$$= \frac{1}{1 + KG_{c2}(s)G_{0}(s)}$$

Large K is good, but how large can we have? Need to consider stability !

Quiz

Construct a Root-locus plot for the system

$$H(s) = \frac{C(s)}{R(s)} = \frac{G_{c1}(s)G_{c2}(s)KG_{0}(s)}{1 + KG_{c2}(s)G_{0}(s)}$$

Set G_{c1} and G_{c2} equal 1, and

$$KG_{0}(s) = \frac{K(7 + s)}{s(1 + s)(5 + s)(20 + s)}$$

How to find the complex conjugate roots with a given K? Do it now for K = 142.

K	Damping ratio	Roots of characteristic equation
248	0.277	$-5.1640, -20.0649, -0.3856 \pm i 1.3348$
142	0.444	$-5.0878, -20.0325, -0.4398 \pm i0.8875$
71	0.666	$-5.0456, -20.01629, -0.4691 \pm i0.5245$

• If we place two zeros at (or near) the desired complex, conjugate-loop pools, for example -0.4398 \pm j0.8875,

• set:

$$G_{c2}(s) = \frac{(s + 0.4398 + j0.8875)(s + 0.4398 - j0.8875)}{0.98}$$

• what will happen ?

- Simplify, $G_{c^2}(s) = \frac{s^2 + 0.88s + 0.98}{0.98}$ $G_{c^2}(s) = s^2 + 0.88s + 1$
- Keeping G_{c1}=1,

$$KG_{c2}(s)G_{0}(s) = \frac{K(7 + s)(s^{2} + 0.88s + 1)}{s(1 + s)(5 + s)(20 + s)}$$

• Not to change the characteristic of the system, by,

• Setting,
$$G_{c1}(s) = \frac{1}{s^2 + 0.88s + 1}$$