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•Unfortunately, the earlier approach cannot be extended to 
systems of 3 or more components.  For these cases, local 
composition models are used to represent multi-component 
systems.

– Wilson’s Theory
– Non-Random-Two-Liquid Theory (NRTL)
– Universal Quasichemical Theory (Uniquac)

•While more complex, these models have two advantages:
– the model parameters are temperature dependent
– the activity coefficients of species in multi-component liquids 

can be calculated using information from binary data.

Local Composition Models

A,B,C A,B A,C B,C
tertiary binary binary binary



Local Composition Models

Composition around a “1” molecule Composition around a “2” molecule

x21 − mole fraction of “2’s” around “1” x12 − mole fraction of “1’s” around “2”

x11 − mole fraction of “1’s” around “1” x22 − mole fraction of “2’s” around “2”

local mole balance, x11 + x21 = 1 local mole balance, x22 + x12 = 1
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Nevertheless, there are some obvious limitations to the assumption of a constant packing frac-
tion. A little calculation would make it clear that the λ for liquid propane at Tr = 0.99 is significantly
larger that λ for toluene at Tr = 0.619. Thus, a mixture of propane and toluene at 366 K would not
be very accurately represented by the Flory-Huggins theory. Note that deviations of λ from each
other are related to differences in the compressibilities of the components. Thus, it is common to
refer to Flory-Huggins theory as an “incompressible” theory and to develop alternative theories to
represent “compressible” polymer mixtures. Not surprisingly, these alternative theories closely
resemble the van der Waals’ equation (with a slightly modified temperature dependence of the a
parameter). This observation lends added significance to Gibbs’ quote: “The whole is simpler than
the sum of its parts” and to Rayleigh’s quote: “I am more than ever an admirer of van der Waals.”

11.6 LOCAL COMPOSITION THEORY

One of the major assumptions of regular solution theory was that the mixture interactions were
independent of each other such that quadratic mixing rules would provide reasonable approxima-
tions as shown in Section 10.1 on page 322. But in some cases, like radically different strengths of
attraction, the mixture interaction can be strongly coupled to the mixture composition. That is, for
instance, the cross parameter could be a function of composition. a12 = a12(x). One way of treating
this prospect is to recognize the possibility that the “local compositions” in the mixture might devi-
ate strongly from the bulk compositions. As an example, consider a lattice consisting primarily of
type A atoms but with two B atoms right beside each other. Suppose all these atoms were the same
size and that the coordination number was 10. Then the local compositions around a B atom are
xAB = 9/10 and xBB = 1/10 (notation of subscripts is AB ⇒ “A around B”). Specific interactions such
as hydrogen bonding and polarity might lead to such effects, and thus, the basis of the hypothesis is
that energetic differences lead to the nonrandomness that causes the quadratic mixing rules to
break down. Excess Gibbs models based on this hypothesis are termed local composition theories,
and were first introduced by Wilson in 1964.1 To develop the theory, we first introduce nomencla-
ture to identify the local compositions summarized in Table 11.2

We assume that the local compositions are given by some weighting factor, Ωij, relative to the over-
all compositions.

11.64

1. Wilson, G.M., J. Am. Chem. Soc. 86:127 (1964).

Table 11.2 Nomenclature for local composition variables.

Composition around a “1” molecule Composition around a “2” molecule

x21 − mole fraction of “2’s” around “1” x12 − mole fraction of “1’s” around “2”

x11 − mole fraction of “1’s” around “1” x22 − mole fraction of “2’s” around “2”

local mole balance, x11 + x21 = 1 local mole balance, x22 + x12 = 1

x21
x11
-------

x2
x1
-----Ω21=

Assume that the local compositions are given by some weighting factor, Ωij, 
relative to the overall compositions.
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Therefore, if Ω12 = Ω21 = 1, the solution is random. Before introducing the functions that describe 
the weighting factors, let us discuss how the factors may be used.

Local Compositions around “1” molecules
Let us begin by considering compositions around “1” molecules. We would like to write the local
mole fractions x21 and x11 in terms of the overall mole fractions, x1 and x2. Using the local mole
balance
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Rearranging Eqn. 11.64

11.67

Substituting 11.67 into 11.66

11.68

Rearranging

11.69

Substituting 11.69 into 11.67

11.70

Local Compositions around “2” molecules
Similar derivations for molecules of type “2” results in

11.71

11.72

x12
x22
-------

x1
x2
-----Ω12=

x11 x21+ 1=

x21 x11
x2
x1
-----Ω21=

x11 1
x2
x1
-----Ω21+⎝ ⎠

⎛ ⎞ 1=

x11
x1

x1 x2Ω21+
--------------------------=

x21
x2Ω21

x1 x2Ω21+
--------------------------=

x22
x2

x1Ω12 x2+
--------------------------=

x12
x1Ω12

x1Ω12 x2+
--------------------------=

Therefore, if Ω12 = Ω21 = 1, the solution is random.

Introductory Chemical Engineering Thermodynamics

J.Richard Elliott, Carl T. Lira

https://chethermo.net/


Local Composition Models
The local mole balance (outside 1’s):
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Writing the local mole fractions x21 and x11 in terms of the overall mole 
fractions, x1 and x2,
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Substitute back to (1),

Rearrange,
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1
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Nevertheless, there are some obvious limitations to the assumption of a constant packing frac-
tion. A little calculation would make it clear that the λ for liquid propane at Tr = 0.99 is significantly
larger that λ for toluene at Tr = 0.619. Thus, a mixture of propane and toluene at 366 K would not
be very accurately represented by the Flory-Huggins theory. Note that deviations of λ from each
other are related to differences in the compressibilities of the components. Thus, it is common to
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the sum of its parts” and to Rayleigh’s quote: “I am more than ever an admirer of van der Waals.”

11.6 LOCAL COMPOSITION THEORY

One of the major assumptions of regular solution theory was that the mixture interactions were
independent of each other such that quadratic mixing rules would provide reasonable approxima-
tions as shown in Section 10.1 on page 322. But in some cases, like radically different strengths of
attraction, the mixture interaction can be strongly coupled to the mixture composition. That is, for
instance, the cross parameter could be a function of composition. a12 = a12(x). One way of treating
this prospect is to recognize the possibility that the “local compositions” in the mixture might devi-
ate strongly from the bulk compositions. As an example, consider a lattice consisting primarily of
type A atoms but with two B atoms right beside each other. Suppose all these atoms were the same
size and that the coordination number was 10. Then the local compositions around a B atom are
xAB = 9/10 and xBB = 1/10 (notation of subscripts is AB ⇒ “A around B”). Specific interactions such
as hydrogen bonding and polarity might lead to such effects, and thus, the basis of the hypothesis is
that energetic differences lead to the nonrandomness that causes the quadratic mixing rules to
break down. Excess Gibbs models based on this hypothesis are termed local composition theories,
and were first introduced by Wilson in 1964.1 To develop the theory, we first introduce nomencla-
ture to identify the local compositions summarized in Table 11.2

We assume that the local compositions are given by some weighting factor, Ωij, relative to the over-
all compositions.

11.64

1. Wilson, G.M., J. Am. Chem. Soc. 86:127 (1964).

Table 11.2 Nomenclature for local composition variables.

Composition around a “1” molecule Composition around a “2” molecule

x21 − mole fraction of “2’s” around “1” x12 − mole fraction of “1’s” around “2”

x11 − mole fraction of “1’s” around “1” x22 − mole fraction of “2’s” around “2”

local mole balance, x11 + x21 = 1 local mole balance, x22 + x12 = 1

x21
x11
-------

x2
x1
-----Ω21=



Local Composition Models
Similar for type ”2”
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Local Compositions around “2” molecules
Similar derivations for molecules of type “2” results in
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x12
x22
-------

x1
x2
-----Ω12=

x11 x21+ 1=

x21 x11
x2
x1
-----Ω21=

x11 1
x2
x1
-----Ω21+⎝ ⎠

⎛ ⎞ 1=

x11
x1

x1 x2Ω21+
--------------------------=

x21
x2Ω21

x1 x2Ω21+
--------------------------=

x22
x2

x1Ω12 x2+
--------------------------=

x12
x1Ω12

x1Ω12 x2+
--------------------------=

Apply this local composition theory to properties using two-fluid theory,
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Applying the Local Composition Concept to Obtain the Free 
Energy of Mixing

We need to relate the local compositions to the excess Gibbs energy. The perspective of represent-
ing all fluids by the square-well potential lends itself naturally to the local composition concept.
Then the intermolecular energy is given simply by the local composition times the well-depth for
that interaction. In equation form, the energy equation for mixtures can be reformulated in terms of
local compositions. The local mole fraction can be related to the bulk mole fraction by defining a
quantity Ωij as follows: 

11.73

The next step in the derivation requires scaling up from the molecular scale, local composition
to the macroscopic energy in the mixture. The rigorous procedure for taking this step requires inte-
gration of the molecular distributions times the molecular interaction energies, analogous to the
procedure for pure fluids as applied in Section 6.8. This rigorous development is presented below in
Section 11.9. On the other hand, it is possible to simply present the result of that derivation for the
time being. This permits a more rapid exploration of the practical implications of local composition
theory. The form of the equation is not so difficult to understand from an intuitive perspective, how-
ever. The energy departure is simply a multiplication of the local composition (xij) by the local
interaction energy (εij). The departure properties are calculated based on a general model known as
the two-fluid theory. According to the two-fluid theory, any intensive departure function in a binary
is given by

11.74

Where the local composition environment of the type 1 molecules determines , and

the local composition environment of the type 2 molecules determines . Note that

 is composition-dependent and is equal to the pure component value only when the
local composition is pure i. 

Noting that ε12 = ε21, and recalling that the local mole fractions must sum to unity, we have for
a binary mixture

11.75

where Ncj is the coordination number (total number of atoms in the neighborhood of the jth spe-
cies), and where we can identify

 and 11.76

x
x

x
x

ij

jj
i
j

ij≡ Ω

M Mig–( ) x1 M Mig–( )
1( )

x2 M Mig–( )
2( )

+=

M Mig–( )
1( )

M Mig–( )
2( )

M Mig–( )
i( )

U U N x Nc x x x Nc x xig A− = + + +[ ]2 1 1 11 21 2 2 12 22( ) ( )ε ε ε ε11 21 12 22

U Uig–( )
1( ) NA

2
-------Nc1 x11ε11 x21ε21+( )= U Uig–( )

2( ) NA
2

-------Nc2 x12ε12 x22ε22+( )=

The local composition environment of the type 1 molecules determines the first
term, local composition environment of the type 2 molecules determines the 
second term.



Introduce the local interaction energy (εij), allowing that the ε12 = ε21

Neglecting the excess volume of mixing relative to the other contributions,
which should be quite acceptable for liquids.
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then

using H as we discussed in regular solution. Since excess volume 
of mixing is neglected, U = H.

where Ncj is the coordination number (total number of atoms in the 
neighborhood of the jth species), z in regular solution.  Uig, reference.



Local Composition Models

Notice that when x1 approaches unity, x2 goes to zero, and x21 goes to zero, 
and x11 goes to one, 
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and were first introduced by Wilson in 1964.1 To develop the theory, we first introduce nomencla-
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We assume that the local compositions are given by some weighting factor, Ωij, relative to the over-
all compositions.
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1. Wilson, G.M., J. Am. Chem. Soc. 86:127 (1964).

Table 11.2 Nomenclature for local composition variables.

Composition around a “1” molecule Composition around a “2” molecule

x21 − mole fraction of “2’s” around “1” x12 − mole fraction of “1’s” around “2”
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local mole balance, x11 + x21 = 1 local mole balance, x22 + x12 = 1

x21
x11
-------

x2
x1
-----Ω21=

382 Unit III Fluid Phase Equilibria in Mixtures

11.65

Therefore, if Ω12 = Ω21 = 1, the solution is random. Before introducing the functions that describe 
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When x1 approaches unity, x2 goes to zero, and from Eqn. 11.64 x21 goes to zero, and x11 goes
to one. The limit applied to Eqn. 11.75 results in (U − Uig)pure1 = (NA/2)Nc1ε11. Similarly, when x2
approaches unity, x1 goes to zero, x12 goes to zero, and x22 goes to one, resulting in (U − Uig)pure2 =
(NA/2)Nc2ε22. For an ideal solution

11.77

The excess energy is obtained by subtracting Eqn. 11.77 from 11.75

11.78

Collecting terms with the same energy variables, and using the local mole balance from Table 11.2
on page 381, (x11–1)ε11 = –x21ε11, and (x22–1)ε22 = –x12ε22, resulting in
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At this point, the traditional local composition theories deviate from regular solution theory in
a way that really has nothing to do with local compositions. Instead, the next step focuses on one of
the subtleties of classical thermodynamics. Recalling, A = U − TS  ⇒ A/RT = U/RT − S/R
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Subtracting we have, 
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Applying the Local Composition Concept to Obtain the Free 
Energy of Mixing

We need to relate the local compositions to the excess Gibbs energy. The perspective of represent-
ing all fluids by the square-well potential lends itself naturally to the local composition concept.
Then the intermolecular energy is given simply by the local composition times the well-depth for
that interaction. In equation form, the energy equation for mixtures can be reformulated in terms of
local compositions. The local mole fraction can be related to the bulk mole fraction by defining a
quantity Ωij as follows: 

11.73

The next step in the derivation requires scaling up from the molecular scale, local composition
to the macroscopic energy in the mixture. The rigorous procedure for taking this step requires inte-
gration of the molecular distributions times the molecular interaction energies, analogous to the
procedure for pure fluids as applied in Section 6.8. This rigorous development is presented below in
Section 11.9. On the other hand, it is possible to simply present the result of that derivation for the
time being. This permits a more rapid exploration of the practical implications of local composition
theory. The form of the equation is not so difficult to understand from an intuitive perspective, how-
ever. The energy departure is simply a multiplication of the local composition (xij) by the local
interaction energy (εij). The departure properties are calculated based on a general model known as
the two-fluid theory. According to the two-fluid theory, any intensive departure function in a binary
is given by

11.74

Where the local composition environment of the type 1 molecules determines , and

the local composition environment of the type 2 molecules determines . Note that

 is composition-dependent and is equal to the pure component value only when the
local composition is pure i. 

Noting that ε12 = ε21, and recalling that the local mole fractions must sum to unity, we have for
a binary mixture

11.75

where Ncj is the coordination number (total number of atoms in the neighborhood of the jth spe-
cies), and where we can identify

 and 11.76
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When x1 approaches unity, x2 goes to zero, and from Eqn. 11.64 x21 goes to zero, and x11 goes
to one. The limit applied to Eqn. 11.75 results in (U − Uig)pure1 = (NA/2)Nc1ε11. Similarly, when x2
approaches unity, x1 goes to zero, x12 goes to zero, and x22 goes to one, resulting in (U − Uig)pure2 =
(NA/2)Nc2ε22. For an ideal solution
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The excess energy is obtained by subtracting Eqn. 11.77 from 11.75
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Collecting terms with the same energy variables, and using the local mole balance from Table 11.2
on page 381, (x11–1)ε11 = –x21ε11, and (x22–1)ε22 = –x12ε22, resulting in
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At this point, the traditional local composition theories deviate from regular solution theory in
a way that really has nothing to do with local compositions. Instead, the next step focuses on one of
the subtleties of classical thermodynamics. Recalling, A = U − TS  ⇒ A/RT = U/RT − S/R
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where  is the infinite temperature limit at the given liquid density, independent of tem-
perature but possibly dependent on composition or density. We need to insert Eqn 11.80 into Eqn
11.82 and integrate. We need to have some algebraic expression for the dependence of Ωij on tem-
perature, which is what distinguishes the local composition theories from each other.

Wilson’s Equation
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When x1 approaches unity, x2 goes to zero, and from Eqn. 11.64 x21 goes to zero, and x11 goes
to one. The limit applied to Eqn. 11.75 results in (U − Uig)pure1 = (NA/2)Nc1ε11. Similarly, when x2
approaches unity, x1 goes to zero, x12 goes to zero, and x22 goes to one, resulting in (U − Uig)pure2 =
(NA/2)Nc2ε22. For an ideal solution

11.77

The excess energy is obtained by subtracting Eqn. 11.77 from 11.75

11.78

Collecting terms with the same energy variables, and using the local mole balance from Table 11.2
on page 381, (x11–1)ε11 = –x21ε11, and (x22–1)ε22 = –x12ε22, resulting in

11.79

Substituting Eqn. 11.70  and Eqn. 11.72

11.80

At this point, the traditional local composition theories deviate from regular solution theory in
a way that really has nothing to do with local compositions. Instead, the next step focuses on one of
the subtleties of classical thermodynamics. Recalling, A = U − TS  ⇒ A/RT = U/RT − S/R

11.81

Therefore,

11.82

where  is the infinite temperature limit at the given liquid density, independent of tem-
perature but possibly dependent on composition or density. We need to insert Eqn 11.80 into Eqn
11.82 and integrate. We need to have some algebraic expression for the dependence of Ωij on tem-
perature, which is what distinguishes the local composition theories from each other.

Wilson’s Equation

Wilson made a bold assumption regarding the temperature dependence of Ωij. Wilson’s original
parameter used in the literature is Λji, but it is related to Ωij in a very direct way. Wilson assumes,1

U Uig–( )
is

x1 U Uig–( )pure1 x2 U Uig–( )pure2+
NA
2

------- x1Nc1ε11 x2Nc2ε22+[ ]= =

UE U Uis–
NA
2

------- x1Nc1 x11ε11 x21ε21+( ) ε– 11( ) x2Nc2 x12ε12 x22ε22+( ) ε– 22( )+[ ]= =

U N x x Nc x x NcE A= − + −[ ]2 1 21 1 2 12 2( ) ( )ε ε ε ε21 11 12 22

UE NA
2

-------
x1x2Ω21Nc1 ε21 ε11–( )

x1 x2Ω21+
--------------------------------------------------------

x2x1Ω12Nc2 ε12 ε22–( )

x1Ω12 x2+
--------------------------------------------------------+=

T A RT
T

T
RT

U
T

TU
RT

T
R

S
T

C
R

U
RT

T
R
C
T

U
RTV V V

V V∂
∂

∂
∂

∂
∂

( / )⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠ − − ⎛

⎝
⎞
⎠ = − − = −2

AE

RT
-------⎝ ⎠
⎛ ⎞d

∞

T

∫
AE

RT
------- AE

RT
-------

∞

– UE

RT2
--------- Td

∞

T

∫–= =

AE RT( )⁄
∞

Arriving at

Section 11.6 Local Composition Theory 385

When x1 approaches unity, x2 goes to zero, and from Eqn. 11.64 x21 goes to zero, and x11 goes
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where AE⁄ (RT)|∞ is the infinite temperature limit at the given liquid density 
independent of temperature but possibly dependent on composition or density. 

using H will be G = H -TS
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infinite temperature limit at the liquid density.
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11.83

(note: Λii = Λjj = 1, and Aij ≠ Aji even though εij = εji), and integration with respect to T becomes
very simple. Assuming Ncj = 2 for all j at all ρ,

11.84

A convenient simplifying assumption before proceeding further is that GE = AE. This corre-
sponds to neglecting the excess volume of mixing relative to the other contributions and is really
quite acceptable for liquids. The customary way of interpreting GE/RT is to separate it into an ener-
getic part known as the residual contribution, (GE/RT)RES, that vanishes at infinite temperature or
when ε12 − ε22 = 0 and ε21 − ε11 = 0, and a size/shape part known as the combinatorial contribution,
(GE/RT)COMB, that represents the infinite temperature limit at the liquid density. For Wilson’s equa-
tion, the first two terms vanish at high T, so 

(GE/RT)RES  = −x1ln(Φ1 + Φ2exp(−A12/RT)) − x2ln(Φ1exp(−A21/RT) + Φ2) 11.85

For the combinatorial contribution, Wilson used Flory’s equation, 

= (GE/RT)COMB = x1ln(Φ1/x1) + x2ln(Φ2/x2) 11.86

It should be noted that the assumption of the temperature dependence of Eqn 11.83 has been made
for convenience, but there is some justification for it, as we show in Section 11.9. Wilson’s equation
becomes

11.87

Algebraic rearrangement of Wilson’s equation results in the form that is usually cited,

11.88

One limitation of Wilson’s equation is that it is unable to model liquid-liquid equilibria, but it is
reasonably accurate for modeling the liquid phase when correlating the vapor-liquid equilibria of many
mixtures. Extending Eqn. 11.88 to a multicomponent solution,

⇒ 11.89

1. Advanced readers may note that our definition of local compositions differs slightly from Wilson’s. Wilson’s original 
derivation combined the two-fluid theory of local compositions with an ad hoc “one-fluid” Flory equation. The same result 
can be derived more consistently using a two-fluid theory. The difference is that the local compositions are dependent on 
size as well as energies as defined by Eqns. 11.64, 11.65, and 11.83. This gives  where 
the original was .
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Substitute back and integrate, 

A convenient simplifying assumption before proceeding further is that GE = AE. 
This corresponds to neglecting the excess volume of mixing, DVE relative to the 
other contributions and is really quite acceptable for liquids.



Wilson’s Equations for Binary 
Solution Activity

386 Unit III Fluid Phase Equilibria in Mixtures

11.83

(note: Λii = Λjj = 1, and Aij ≠ Aji even though εij = εji), and integration with respect to T becomes
very simple. Assuming Ncj = 2 for all j at all ρ,

11.84

A convenient simplifying assumption before proceeding further is that GE = AE. This corre-
sponds to neglecting the excess volume of mixing relative to the other contributions and is really
quite acceptable for liquids. The customary way of interpreting GE/RT is to separate it into an ener-
getic part known as the residual contribution, (GE/RT)RES, that vanishes at infinite temperature or
when ε12 − ε22 = 0 and ε21 − ε11 = 0, and a size/shape part known as the combinatorial contribution,
(GE/RT)COMB, that represents the infinite temperature limit at the liquid density. For Wilson’s equa-
tion, the first two terms vanish at high T, so 

(GE/RT)RES  = −x1ln(Φ1 + Φ2exp(−A12/RT)) − x2ln(Φ1exp(−A21/RT) + Φ2) 11.85

For the combinatorial contribution, Wilson used Flory’s equation, 

= (GE/RT)COMB = x1ln(Φ1/x1) + x2ln(Φ2/x2) 11.86

It should be noted that the assumption of the temperature dependence of Eqn 11.83 has been made
for convenience, but there is some justification for it, as we show in Section 11.9. Wilson’s equation
becomes

11.87

Algebraic rearrangement of Wilson’s equation results in the form that is usually cited,

11.88

One limitation of Wilson’s equation is that it is unable to model liquid-liquid equilibria, but it is
reasonably accurate for modeling the liquid phase when correlating the vapor-liquid equilibria of many
mixtures. Extending Eqn. 11.88 to a multicomponent solution,

⇒ 11.89

1. Advanced readers may note that our definition of local compositions differs slightly from Wilson’s. Wilson’s original 
derivation combined the two-fluid theory of local compositions with an ad hoc “one-fluid” Flory equation. The same result 
can be derived more consistently using a two-fluid theory. The difference is that the local compositions are dependent on 
size as well as energies as defined by Eqns. 11.64, 11.65, and 11.83. This gives  where 
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Therefore, residual contribution 

For the combinatorial contribution, Wilson used Flory’s equation, 
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Combine, the above, Wilson’s equation becomes,
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Simplified version, when Fi = xi :



Wilson’s Equations for Binary 
Solution Activity

•A versatile and reasonably accurate model of excess Gibbs 
Energy was developed by Wilson in 1964.  For a binary system, 
GE is provided by:

Vi is the molar volume at T of the pure component i.
aij is determined from experimental data.  

The notation varies greatly between publications.  This includes,

– a12 = (l12 - l11),  a21 = (l12 - l22) that you will encounter in Holmes, 
M.J. and M.V. Winkle (1970) Ind. Eng. Chem. 62, 21-21.
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Wilson’s Equations for Binary 
Solution Activity

•Recall

•When applied to Wilson’s :
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Wilson’s Equations for Multi-
Component Mixtures

•The strength of Wilson’s approach resides in its ability to describe multi-
component (3+) mixtures using binary data.  

– Experimental data of the mixture of interest (ie. acetone, ethanol, benzene) 
is not required

– We only need data (or parameters) for acetone-ethanol, acetone-benzene 
and ethanol-benzene mixtures

•The excess Gibbs energy for multicomponent mixtures is written:

•and the activity coefficients become:

•where Lij = 1 for i=j.  Summations are over all species.
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Wilson’s Equations for 
3-Component Mixtures

•For three component systems, activity coefficients can be 
calculated from the following relationship:

•Model coefficients are defined as (Lij = 1 for i=j): 
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Non-Random-Two-Liquid Theory (NRTL)

• NRTL model (Non-Random Two-Liquid; Renon and Prausnitz, 
1968)

– For binary systems:

– a12 , the so-called non-randomness parameter
– Good for both miscible and partially miscible systems
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Non-Random-Two-Liquid Theory (NRTL)

• For a liquid, in which the local distribution is random around 
the center molecule, the parameter α12 = 0. In that case the 
equations reduce to the one-parameter Margules activity model

• The NRTL parameters are fitted to activity coefficients that have 
been derived from experimentally determined phase 
equilibrium data

• Noteworthy is that for the same liquid mixture there might exist 
several NRTL parameter sets. It depends from the kind of phase 
equilibrium (i.e. solid-liquid, liquid-liquid, vapor-liquid). 
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Universal Quasichemical Theory
• UNIQUAC (Abrams and Prausnitz, 1975)

• In the UNIQUAC model the activity coefficients of the ith

component of a two component mixture are described by a 
combinatorial and a residual contribution

• The first is an entropic term quantifying the deviation from 
ideal solubility as a result of differences in molecule shape. 
The latter is an enthalpic correction caused by the change in 
interacting forces between different molecules upon mixing.

R
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• Combinatorial contribution

– Vi, is the Volume fraction per mixture mole fraction for the ith
component

– Fi, is the surface area fraction per mixture molar fraction for 
the ith component

– Z=10
• The excess entropy gC is calculated exclusively from 

the pure chemical parameters, using the relative Van 
der Waals volumes ri and surface areas qi of the pure 
chemicals.
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A convenient simplifying assumption before proceeding further is that GE = AE. This corre-
sponds to neglecting the excess volume of mixing relative to the other contributions and is really
quite acceptable for liquids. The customary way of interpreting GE/RT is to separate it into an ener-
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It should be noted that the assumption of the temperature dependence of Eqn 11.83 has been made
for convenience, but there is some justification for it, as we show in Section 11.9. Wilson’s equation
becomes

11.87

Algebraic rearrangement of Wilson’s equation results in the form that is usually cited,

11.88

One limitation of Wilson’s equation is that it is unable to model liquid-liquid equilibria, but it is
reasonably accurate for modeling the liquid phase when correlating the vapor-liquid equilibria of many
mixtures. Extending Eqn. 11.88 to a multicomponent solution,

⇒ 11.89

1. Advanced readers may note that our definition of local compositions differs slightly from Wilson’s. Wilson’s original 
derivation combined the two-fluid theory of local compositions with an ad hoc “one-fluid” Flory equation. The same result 
can be derived more consistently using a two-fluid theory. The difference is that the local compositions are dependent on 
size as well as energies as defined by Eqns. 11.64, 11.65, and 11.83. This gives  where 
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• Residual contribution

Δuij [J/mol] is the binary interaction energy parameter.  
Theory defines Δuij = uij - uii, and Δuji = uji - ujj, where uij is the 
interaction energy between molecules i and j.

• Data is derived from experimental activity 
coefficients, or from phase diagrams

interaction
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when ε12 − ε22 = 0 and ε21 − ε11 = 0, and a size/shape part known as the combinatorial contribution,
(GE/RT)COMB, that represents the infinite temperature limit at the liquid density. For Wilson’s equa-
tion, the first two terms vanish at high T, so 

(GE/RT)RES  = −x1ln(Φ1 + Φ2exp(−A12/RT)) − x2ln(Φ1exp(−A21/RT) + Φ2) 11.85

For the combinatorial contribution, Wilson used Flory’s equation, 

= (GE/RT)COMB = x1ln(Φ1/x1) + x2ln(Φ2/x2) 11.86

It should be noted that the assumption of the temperature dependence of Eqn 11.83 has been made
for convenience, but there is some justification for it, as we show in Section 11.9. Wilson’s equation
becomes

11.87

Algebraic rearrangement of Wilson’s equation results in the form that is usually cited,

11.88

One limitation of Wilson’s equation is that it is unable to model liquid-liquid equilibria, but it is
reasonably accurate for modeling the liquid phase when correlating the vapor-liquid equilibria of many
mixtures. Extending Eqn. 11.88 to a multicomponent solution,

⇒ 11.89

1. Advanced readers may note that our definition of local compositions differs slightly from Wilson’s. Wilson’s original 
derivation combined the two-fluid theory of local compositions with an ad hoc “one-fluid” Flory equation. The same result 
can be derived more consistently using a two-fluid theory. The difference is that the local compositions are dependent on 
size as well as energies as defined by Eqns. 11.64, 11.65, and 11.83. This gives  where 
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The UNIFAC model
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A. Fredenslund, R.L. Jones, and J.M. Prausnitz, AlChE Journal (Vol.21, No.6 1975)
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Example: obtain activity coefficients for the acetone/n-pentane system 

at 307 K and xacetone=0.047. 

CH3C
O

H3C

Group identification

Molecules (i) name Main No. Sec. No Rj Qj

Acetone (1) CH3 1 1 1 0.9011 0.848

CH3CO 9 19 1 1.6724 1.488

n-pentane CH3 1 1 2 0.9011 0.848

CH2 1 2 3 0.6744 0.540

)( i
jn

CH3CH2H3C CH2CH2

“Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures”
AlChE Journal (Vol. 21, No. 6, pp 1086-1099) 





calculation of combinatorial contribution

( ) ( )residualialcombinator iii ggg lnlnln +=

( ) å-++=
j

jj

i

i
i

i

i

i

i
i lx

x
lz

x
ialcombinator f

f
qfg ln

2
lnln ( ) ( )12/ ---= iiii rzqrl

segment volume for acetone:

047.0=Axmole fraction of acetone:

5735.26724.119011.01 =´+´=Ar

segment volume for pentane: 8254.36744.039011.02 =´+´=Pr

total volume at xA= 0.047: 7666.38254.3953.05735.2047.0 =´+´=totr

the segment volume fraction for acetone: 0321.0
7666.3
5735.2047.0

=
´

=Af

the segment fraction for pentane: 9679.01 =-= AP ff

Residual error

/#



area for acetone: 336.2488.11848.01 =´+´=Aq

area for pentane: 316.3540.03848.02 =´+´=Pq

total area at xA=0.047: 2699.3316.3953.0336.2047.0 =´+´=totq

area fraction for acetone: 0336.0
2699.3

336.2047.0
=

´
=Aq

area fraction for pentane: 9664.01 =-= AP qq

( ) ( ) 3860.0)15735.2(336.25735.2
2
10)1(

2
-=---=---= AAAA rqrZl

( ) ( ) 2784.018254.3316.38254.3
2
10

-=---=Pl

Molecule (i) ri qi fi qi li
acetone 2.5735 2.336 0.0321 0.0336 -0.3860

pentane 3.8254 3.316 0.9679 0.9664 -0.2784

0#



combinatorial contribution
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( ) ( )[ ] 0403.02784.0953.0386.0047.0
047.0
0321.0         

386.0
0321.0
0336.0ln336.2

2
10

047.0
0321.0lnln

-=-´+-´-

-´´+=Agfor acetone

for pentane

( ) ( )[ ] 0007.02784.0953.0386.0047.0
953.0

9679.0         

2784.0
9679.0
9664.0ln316.3

2
10

953.0
9679.0lnln

-=-´+-´-

-´´+=Pg

-0.0007110



residual contribution
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from table H.2

2119.0
307

4.476exp4.476 9,1CH3COCH3,9,1 =úû
ù

êë
é-=YÞ== aa

9165.0
307
76.26exp760.26 1,9CH3CH3CO,1,9 =úû
ù

êë
é-=YÞ== aa

Þ== 09,91,1 aa 19,91,1 =Y=Y
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for pure acetone, there are only two different kinds of groups: CH3 and 
CH3O. Let CH3 be labeled by 1 and CH3O be labeled by 19.

=Qm

surface area
fraction of
group m å

=
n

nn

mm

QX
QX

=mX mole fraction of group m in 
mixture

we are dealing a pure substance!

Qi from table H.1
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33

for pure pentane, there are two kinds of subgroups, CH3 and  CH2 and both 
subgroups belong to one main group. Let CH2 be labeled by 2 

6.0    ,4.0
5
2

2)(
1

)(
1

)(
1

1 ===
+

= (P)

PP

P
(P) XX

nn
n

Since both subgroups are belong to the same main group 

0lnln )(
2

)(
1 =G=G PP

Calculation of group residual activity at xA= 0.047

for CH3(labeled 1) for CH2(labeled 2)
for CH3CO
(labeled 9)

5064.0
488.10097.0540.05884.0848.04019.0

848.04019.0
1 =

´+´+´
´

=Q

ln Γ( now we are dealing a mixture!

A P

CH3 CH2 CH2CO

CH3
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0097.0   ,5884.0
5953.02047.0

3953.0   ,4019.0
5953.02047.0
2953.01047.0

1921 ==
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==

´+´
´+´

= XXX 3&

surface area



4721.0
488.10097.0540.05884.0848.04019.0
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CH2

CH2CO

Θ&Ψ&,$
Θ&Ψ$,&

Θ$Ψ$,$ Θ)Ψ),$

Θ$Ψ$,) Θ)Ψ),) Θ&Ψ&,)
Θ&Ψ),&

Θ! =
0.0097×1.488

0.4019×0.848 + 0.5884×0.540 + 0.0097×1.488 = 0.0214

Ψ)$ = 1

Θ$Ψ$,& + Θ)Ψ),& Θ&Ψ&,&



ln Γ& = 1.488 1 − ln 0.5064 + 0.4721 0.2119 + 0.0214
−1.488 0.5064 + 0.4721 0.9165

0.5064 + 0.4721 0.9165 + 0.0214 +
0.0214

0.5064 + 0.4721 0.2119 + 0.0214
= 2.091

The residual contributions to the activity coefficients follow

( ) ( ) 33 1068.50.021.230.01045.12ln -- ´=-´+-´´=R
Pg

Finally summing up the combinatorial and residual contributions

62.166.1403.0ln =+-=Ag
33 1098.41068.50007.0ln -- ´=´+-=Pg

or

experimental data: 11.1    ,41.4 == PA gg

mix - pure

Θ$Ψ$,& Θ)Ψ),& Θ&Ψ&,&
Θ&Ψ&,&

Θ$Ψ&,$ Θ)Ψ&,)
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)()( lnlnln ng
mix - pure

Θ)Ψ),&Θ$Ψ$,&

( ) ( ) 66.1139.021.21409.01045.11ln 3 =-´+-´´= -R
Ag 2.09 1.54

ln %% = −0.0403 + 1.54 = 1.5

01.1     ,07.5 == PA gg 4.48


