Solution Thermodynamics III

Min Huang, PhD ChE@TongjiU

Term project

- Title:
- Name and affiliation
- Executive Abstract
- Introduction
- Models and methods
- Results and discusses
- Summary
- References

•Unfortunately, the earlier approach cannot be extended to systems of 3 or more components. For these cases, local composition models are used to represent multi-component systems.

- Wilson's Theory
- Non-Random-Two-Liquid Theory (NRTL)
- Universal Quasichemical Theory (Uniquac)

•While more complex, these models have two advantages:

- the model parameters are temperature dependent
- the activity coefficients of species in multi-component liquids can be calculated using information from binary data.

Introductory Chemical Engineering Thermodynamics

J.Richard Elliott, Carl T. Lira

Composition around a "1" molecule	Composition around a "2" molecule
x ₂₁ – mole fraction of "2's" around "1"	x ₁₂ – mole fraction of "1's" around "2"
x ₁₁ – mole fraction of "1's" around "1"	x ₂₂ – mole fraction of "2's" around "2"
local mole balance, x ₁₁ + x ₂₁ = 1	local mole balance, x ₂₂ + x ₁₂ = 1

Assume that the local compositions are given by some weighting factor, Ω_{ij} , relative to the overall compositions.

$$\frac{x_{21}}{x_{11}} = \frac{x_2}{x_1}\Omega_{21} \qquad \frac{x_{12}}{x_{22}} = \frac{x_1}{x_2}\Omega_{12}$$

Therefore, if $\Omega_{12} = \Omega_{21} = 1$, the solution is random.

The local mole balance (outside 1's):

$$x_{11} + x_{21} = 1$$

Writing the local mole fractions x_{21} and x_{11} in terms of the overall mole fractions, x_1 and $x_{2,}$

$$x_{21} = x_{11} \frac{x_2}{x_1} \Omega_{21}$$

<i>x</i> ₂₁	=	$\frac{x_2}{2}\Omega_{21}$
<i>x</i> ₁₁		x_1^{21}

Substitute back to (1),

$$x_{11} \left(1 + \frac{x_2}{x_1} \Omega_{21} \right) = 1$$

Rearrange,

$$x_{11} = \frac{x_1}{x_1 + x_2 \Omega_{21}}$$

Substitute back to (2),

$$x_{21} = \frac{x_2 \Omega_{21}}{x_1 + x_2 \Omega_{21}}$$

Similar for type "2"

$$x_{22} = \frac{x_2}{x_1 \Omega_{12} + x_2}$$
$$x_1 \Omega_{12} + x_2$$

$$x_{12} = \frac{x_1 \mathbf{x}_{12}}{x_1 \Omega_{12} + x_2}$$

Apply this local composition theory to properties using two-fluid theory,

$$(M - M^{ig}) = x_1 (M - M^{ig})^{(1)} + x_2 (M - M^{ig})^{(2)}$$

The local composition environment of the type 1 molecules determines the first term, local composition environment of the type 2 molecules determines the second term.

Introduce the local interaction energy (ε_{ij}), allowing that the $\varepsilon_{12} = \varepsilon_{21}$

Neglecting the excess volume of mixing relative to the other contributions, which should be quite acceptable for liquids.

$$(U - U^{ig})^{(1)} = \frac{N_A}{2} N c_1 (x_{11} \varepsilon_{11} + x_{21} \varepsilon_{21})$$
$$(U - U^{ig})^{(2)} = \frac{N_A}{2} N c_2 (x_{12} \varepsilon_{12} + x_{22} \varepsilon_{22})$$

where N_{cj} is the coordination number (total number of atoms in the neighborhood of the jth species), $\frac{z}{z}$ in regular solution. U^{ig} , reference.

then

$$U - U^{ig} = \frac{N_A}{2} \Big[x_1 N c_1 (x_{11} \varepsilon_{11} + x_{21} \varepsilon_{21}) + x_2 N c_2 (x_{12} \varepsilon_{12} + x_{22} \varepsilon_{22}) \Big]$$

using H as we discussed in regular solution. Since excess volume of mixing is neglected, U = H.

Recall,

$$\frac{x_{21}}{x_{11}} = \frac{x_2}{x_1}\Omega_{21} \qquad \frac{x_{12}}{x_{22}} = \frac{x_1}{x_2}\Omega_{12}$$

Notice that when x_1 approaches unity, x_2 goes to zero, and x_{21} goes to zero, and x_{11} goes to one,

$$(U - U^{ig})_{pure1} = (N_A/2)Nc_1\varepsilon_{11}$$

$$(U - U^{ig})_{pure2} = (N_A/2)Nc_2\varepsilon_{22}$$
same as regular solution

For ideal solution, is

$$(U - U^{ig})^{is} = x_1(U - U^{ig})_{pure1} + x_2(U - U^{ig})_{pure2} = \frac{N_A}{2} [x_1 N c_1 \varepsilon_{11} + x_2 N c_2 \varepsilon_{22}]$$

Recall,

$$U - U^{ig} = \frac{N_A}{2} \left[x_1 N c_1 (x_{11} \varepsilon_{11} + x_{21} \varepsilon_{21}) + x_2 N c_2 (x_{12} \varepsilon_{12} + x_{22} \varepsilon_{22}) \right]$$

Subtracting we have,

$$U^{E} = U - U^{is} = \frac{N_{A}}{2} [x_{1}Nc_{1}((x_{11}\varepsilon_{11} + x_{21}\varepsilon_{21}) - \varepsilon_{11}) + x_{2}Nc_{2}((x_{12}\varepsilon_{12} + x_{22}\varepsilon_{22}) - \varepsilon_{22})]$$

using
$$(x_{11}-1)\varepsilon_{11} = -x_{21}\varepsilon_{11}$$
 $(x_{22}-1)\varepsilon_{22} = -x_{12}\varepsilon_{22}$

Arriving at $U^E = \frac{N_A}{2} \left[x_1 x_{21} N c_1 (\varepsilon_{21} - \varepsilon_{11}) + x_2 x_{12} N c_2 (\varepsilon_{12} - \varepsilon_{22}) \right]$

Replace x_{21} , and x_{12} ,

$$U^{E} = \frac{N_{A}}{2} \left[\frac{x_{1}x_{2}\Omega_{21}Nc_{1}(\varepsilon_{21} - \varepsilon_{11})}{x_{1} + x_{2}\Omega_{21}} + \frac{x_{2}x_{1}\Omega_{12}Nc_{2}(\varepsilon_{12} - \varepsilon_{22})}{x_{1}\Omega_{12} + x_{2}} \right]$$

Wilson's Equations for Binary Solution Activity

Recall,

$$A = U - TS \implies A/RT = U/RT - S/R$$

then,

$$T\left(\frac{\partial (A/RT)}{\partial T}\right)_{V} = \frac{T}{RT}\left(\frac{\partial U}{\partial T}\right)_{V} - \frac{TU}{RT^{2}} - \frac{T}{R}\left(\frac{\partial S}{\partial T}\right)_{V} = \frac{C_{V}}{R} - \frac{U}{RT} - \frac{T}{R}\frac{C_{V}}{T} = -\frac{U}{RT}$$

We have,

$$\int_{\infty}^{T} d\left(\frac{A^{E}}{RT}\right) = \left.\frac{A^{E}}{RT} - \frac{A^{E}}{RT}\right|_{\infty} = \left.-\int_{\infty}^{T} \frac{U^{E}}{RT^{2}} dT\right.$$

where $A^{E}/(RT)|_{\infty}$ is the infinite temperature limit at the given liquid density independent of temperature but possibly dependent on composition or density.

using H will be G = H - TS

Wilson made a bold assumption regarding the temperature dependence of Ω_{ij} .

$$\Omega_{ij} = \Lambda_{ji} = \frac{V_i}{V_j} \exp\left(\frac{-N_A N c_j (\varepsilon_{ij} - \varepsilon_{jj})}{2RT}\right) = \frac{V_i}{V_j} \exp\left(\frac{-A_{ji}}{RT}\right)$$

Substitute back and integrate,

$$\frac{A^{E}}{RT} = -x_{1}\ln(\Phi_{1} + \Phi_{2}\exp(-A_{12}/RT)) - x_{2}\ln(\Phi_{1}\exp(-A_{21}/RT) + \Phi_{2}) + \frac{A^{E}}{RT}\Big|_{\infty}$$

A convenient simplifying assumption before proceeding further is that $G^{E} = A^{E}$. This corresponds to neglecting the excess volume of mixing, ΔV^{E} relative to the other contributions and is really quite acceptable for liquids.

Separate G^E/RT into an energetic part known as the *residual* contribution, that vanishes at infinite temperature or when $\varepsilon_{12} - \varepsilon_{22} = 0$ and $\varepsilon_{21} - \varepsilon_{11} = 0$, and a size/shape part known as the *combinatorial* contribution, that represents the infinite temperature limit at the liquid density.

Wilson's Equations for Binary Solution Activity

Therefore, residual contribution

$$(G^{E}/RT)^{RES} = -x_1 \ln(\Phi_1 + \Phi_2 \exp(-A_{12}/RT)) - x_2 \ln(\Phi_1 \exp(-A_{21}/RT) + \Phi_2)$$

For the combinatorial contribution, Wilson used Flory's equation,

$$G^{E}/(RT)\Big|_{\infty} = (G^{E}/RT)^{COMB} = x_{1}\ln(\Phi_{1}/x_{1}) + x_{2}\ln(\Phi_{2}/x_{2})$$

Combine, the above, Wilson's equation becomes,

$$\frac{G^{E}}{RT} = -x_{1}\ln\left(\Phi_{1} + \Phi_{2}\exp\left(\frac{-A_{12}}{RT}\right)\right) - x_{2}\ln\left(\Phi_{1}\exp\left(\frac{-A_{21}}{RT}\right) + \Phi_{2}\right) + x_{1}\ln\frac{\Phi_{1}}{x_{1}} + x_{2}\ln\frac{\Phi_{2}}{x_{2}}$$

Simplified version, when $\Phi_i = x_i$:

$$\frac{G^{E}}{RT} = -x_{1}\ln(x_{1} + x_{2}\Lambda_{12}) - x_{2}\ln(x_{1}\Lambda_{21} + x_{2})$$

Wilson's Equations for Binary Solution Activity

•A versatile and reasonably accurate model of excess Gibbs Energy was developed by Wilson in 1964. For a binary system, G^E is provided by:

$$\frac{G^{E}}{RT} = x_{1} \ln(x_{1} + x_{2}\Lambda_{12}) - x_{2} \ln(x_{2} + x_{1}\Lambda_{21})$$
$$\Lambda_{12} = \frac{V_{2}}{V_{1}} \exp\left[\frac{-a_{12}}{RT}\right] \qquad \Lambda_{21} = \frac{V_{1}}{V_{2}} \exp\left[\frac{-a_{21}}{RT}\right]$$

V_i is the molar volume at T of the pure component *i*.

*a*_{ii} is determined from experimental data.

The notation varies greatly between publications. This includes,

- $a_{12} = (\lambda_{12} - \lambda_{11}), a_{21} = (\lambda_{12} - \lambda_{22})$ that you will encounter in Holmes, M.J. and M.V. Winkle (1970) *Ind. Eng. Chem.* 62, 21-21.

Wilson's Equations for Binary Solution Activity

Recall

$$RT\ln\gamma_i = \overline{G}_i^E = \frac{\partial nG^E}{\partial n_i}\Big|_{T,P,n_j}$$

•When applied to Wilson's :

$$\ln \gamma_1 = -\ln(x_1 + x_2 \Lambda_{12}) + x_2 \left(\frac{\Lambda_{12}}{x_1 + x_2 \Lambda_{12}} - \frac{\Lambda_{21}}{x_2 + x_1 \Lambda_{21}}\right)$$

$$\ln \gamma_2 = -\ln(x_2 + x_1 \Lambda_{21}) - x_1 \left(\frac{\Lambda_{12}}{x_1 + x_2 \Lambda_{12}} - \frac{\Lambda_{21}}{x_2 + x_1 \Lambda_{21}} \right)$$

Wilson's Equations for Multi-Component Mixtures

•The strength of Wilson's approach resides in its ability to describe multicomponent (3+) mixtures using binary data.

- Experimental data of the mixture of interest (ie. acetone, ethanol, benzene) is not required
- We only need data (or parameters) for acetone-ethanol, acetone-benzene and ethanol-benzene mixtures

•The excess Gibbs energy for multicomponent mixtures is written:

$$\frac{G^E}{RT} = -\sum_i x_i \ln(\sum_j x_j \Lambda_{ij})$$

•and the activity coefficients become:

$$\ln \gamma_i = 1 - \ln \sum_i x_j \Lambda_{ij} - \sum_k \frac{x_k \Lambda_{ki}}{\sum_j x_j \Lambda_{kj}}$$

•where $\Lambda_{ij} = 1$ for i=j. Summations are over all species.

Wilson's Equations for 3-Component Mixtures

•For three component systems, activity coefficients can be calculated from the following relationship:

$$\ln \gamma_{i} = 1 - \ln(x_{1}\Lambda_{i1} + x_{2}\Lambda_{i2} + x_{3}\Lambda_{i3}) - \frac{x_{1}\Lambda_{1i}}{x_{1} + x_{2}\Lambda_{12} + x_{3}\Lambda_{13}} - \frac{x_{2}\Lambda_{2i}}{x_{1}\Lambda_{21} + x_{2} + x_{3}\Lambda_{23}} - \frac{x_{3}\Lambda_{3i}}{x_{1}\Lambda_{31} + x_{2}\Lambda_{32} + x_{3}}$$

•Model coefficients are defined as ($\Lambda_{ij} = 1$ for i=j):

$$\Lambda_{ij} = \frac{V_j}{V_i} \exp\left[\frac{-a_{ij}}{RT}\right]$$

Non-Random-Two-Liquid Theory (NRTL)

- NRTL model (Non-Random Two-Liquid; Renon and Prausnitz, 1968)
 - For binary systems:

$$ln \gamma_{1} = x_{2}^{2} \left[\tau_{21} \left(\underbrace{G_{21}}{x_{1} + x_{2}G_{21}} \right)^{2} + \frac{\tau_{12}G_{12}}{(x_{2} + x_{1}G_{12})^{2}} \right]$$

$$ln \gamma_{2} = x_{1}^{2} \left[\tau_{12} \left(\underbrace{G_{12}}{x_{2} + x_{1}G_{12}} \right)^{2} + \frac{\tau_{21}G_{21}}{(x_{1} + x_{2}G_{21})^{2}} \right]$$

where $G_{12} = exp \left[- \alpha_{12} \left(\underbrace{g_{12} - g_{22}}{RT} \right) \right]; \quad G_{21} = exp \left[- \alpha_{12} \left(\underbrace{g_{21} - g_{11}}{RT} \right) \right]$ some Wilson

- α_{12} , the so-called non-randomness parameter
- Good for both miscible and partially miscible systems

Non-Random-Two-Liquid Theory (NRTL)

 For a liquid, in which the local distribution is random around the center molecule, the parameter α₁₂ = 0. In that case the equations reduce to the one-parameter Margules activity model

$$\ln \gamma_1 = x_2^2 [\tau_{21} + \tau_{12}] = A x_2^2$$

$$\ln \gamma_2 = x_1^2 [\tau_{12} + \tau_{21}] = A x_1^2$$

- The NRTL parameters are fitted to activity coefficients that have been derived from experimentally determined phase equilibrium data
- Noteworthy is that for the same liquid mixture there might exist several NRTL parameter sets. It depends from the kind of phase equilibrium (i.e. solid-liquid, liquid-liquid, vapor-liquid).

Universal Quasichemical Theory

- UNIQUAC (Abrams and Prausnitz, 1975)
- In the UNIQUAC model the activity coefficients of the ith component of a two component mixture are described by a combinatorial and a residual contribution

$$\ln \gamma_i = \ln \gamma_i^C + \ln \gamma_i^R \qquad \text{more Wilso}$$

n

 The first is an entropic term quantifying the deviation from ideal solubility as a result of differences in molecule shape. The latter is an enthalpic correction caused by the change in interacting forces between different molecules upon mixing.

$$G^{E}/(RT)\Big|_{\infty} = (G^{E}/RT)^{COMB} = x_{1}\ln(\Phi_{1}/x_{1}) + x_{2}\ln(\Phi_{2}/x_{2})$$

Combinatorial contribution size and sites

$$\ln \gamma_i^C = (1 - V_i + \ln V_i) + \frac{Z}{2} q_i \left(1 - \frac{V_i}{F_i} + \ln \frac{V_i}{F_i} \right) \qquad \qquad \ln \frac{\Phi_i}{x_i}$$

- V_i, is the Volume fraction per mixture mole fraction for the ith component
- F_i, is the surface area fraction per mixture molar fraction for the ith component
- Z=10
- The excess entropy γ^c is calculated exclusively from the pure chemical parameters, using the relative Van der Waals volumes r_i and surface areas q_i of the pure chemicals.

 $(G^{E}/RT)^{RES} = -x_1 \ln(\Phi_1 + \Phi_2 \exp(-A_{12}/RT)) - x_2 \ln(\Phi_1 \exp(-A_{21}/RT) + \Phi_2)$

Residual contribution

interaction

 $\ln \gamma_i^R = q_i \left(1 - \ln \frac{\sum_j q_j x_j \tau_{ij}}{\sum_j q_j x_j} - \sum_j \frac{q_j x_j \tau_{ij}}{\sum_k q_k x_k \tau_{kj}} \right)$ $\tau_{ij} = e^{-\Delta u_{ij}/RT}$

with sites correction

 Δu_{ij} [J/mol] is the binary interaction energy parameter. Theory defines $\Delta u_{ij} = u_{ij} - u_{ii}$, and $\Delta u_{ji} = u_{ji} - u_{jj}$, where u_{ij} is the interaction energy between molecules i and j.

 Data is derived from experimental activity coefficients, or from phase diagrams sub means local composition

The UNIFAC model

A. Fredenslund, R.L. Jones, and J.M. Prausnitz, AIChE Journal (Vol.21, No.6 1975)

$$\ln \gamma_{i} = \ln \gamma_{i}^{C} (combinatorial) + \ln \gamma_{i}^{R} (residual)$$

$$\ln \gamma_{i} (combinatorial) = \ln \frac{\phi_{i}}{x_{i}} + \frac{z}{2} q_{i} \ln \frac{\theta_{i}}{\phi_{i}} + l_{i} - \frac{\phi_{i}}{x_{i}} \sum_{j} x_{j} l_{j}$$

Same as
UNIQUAC
Model
with $l_{i} = (r_{i} - q_{i})z/2 - (r_{i} - 1)$ $\ln \gamma_{i} (residual) = \sum_{K} V_{k}^{(i)} [\ln \Gamma_{k} - \ln \Gamma_{k}^{(i)}]$

 $V_{k}^{(i)}$ is the number of k groups present in species i

 $\Gamma_k^{(i)}$ is the residual contribution to the activity coefficient of group k in a pure fluid of species *i*.

 \mathbf{x}

$$\ln \Gamma_{k} = Q_{k} \left[1 - \ln \left(\sum_{m} \Theta_{m} \Psi_{mk} \right) - \sum_{m} \frac{\Theta_{m} \Psi_{km}}{\sum_{n} \Theta_{n} \Psi_{nm}} \right] \qquad \Theta_{m} = \left\{ \begin{array}{c} \text{surface area} \\ \text{fraction of} \\ \text{group m} \end{array} \right\} = \frac{X_{m} Q_{m}}{\sum_{n} X_{n} Q_{n}} \\ \Psi_{mn} = \exp \left[\frac{-(u_{mn} - u_{mn})}{kT} \right] = \exp \left[\frac{-a_{mn}}{T} \right] \qquad X_{m} = \begin{array}{c} \text{mole fraction of group } m \text{ in} \\ \text{mixture} \end{array} \right]$$

Z=10

$$l_2 = \left(\frac{z}{2}\right) (r_2 - q_2) - (r_2 - 1)$$

For component 2, γ_2 can be found by interchanging subscripts 1 and 2.

Numerical results for $\ln \gamma$ are insensitive to the choice of coordination number z provided a reasonable value $(6 \le z \le 12)$ is chosen. However, adjustable parameters τ_{21} and τ_{12} depend on that choice. In this work we have consistently used z = 10.

$$\Psi_{mn} = \exp\left[\frac{-(u_{mn} - u_{nn})}{kT}\right] = \exp\left[\frac{-a_{mn}}{T}\right]$$

D.S. Abrams and J.M. Prausnitz, AIChE J. Vol. 21:116-128, 1975

Example: obtain activity coefficients for the acetone/n-pentane system at 307 K and $x_{acetone}$ =0.047.

	Grou	up identifica	ation			
Molecules (i)	name	Main No.	Sec. No	${oldsymbol{\mathcal{V}}}_j^{(i)}$	R_j	Q_j
Acetone (1)	CH ₃	1	1	1	0.9011	0.848
	CH ₃ CO	9	19	1	1.6724	1.488
n-pentane	CH ₃	1	1	2	0.9011	0.848
	CH ₂	1	2	3	0.6744	0.540

"Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures" AIChE Journal (Vol. 21, No. 6, pp 1086-1099)

Main group	Subgroup	k	R _k	Q_k	Examples of molecules and their constituent groups				
1 "CH2"	CH ₃	1		0.848	n-Butane:	2CH ₃ , 2CH ₂			
	CH_2	2	0.6744	0.540	Isobutane:	3CH ₃ , 1CH			
	CH	3	0.4469	0.228	2,2-Dimethyl				
	С	4	0.2195	0.000	propane:	4CH ₃ , 1C			
3"ACH	3"ACH ACH 10 0.5313 0.400		Benzene:	6ACH					
(AC = ar)	omatic carbon	ı)							
4 "ACCH2"	ACCH ₃	12	1.2663	0.968	Toluene:	5ACH, 1ACCH3			
-	ACCH ₂	13	1.0396	0.660	Ethylbenzene:	1CH ₃ ,5ACH,1ACCH ₂			
5"OH	OH	15	1.0000	1.200	Ethanol:	1CH ₃ , 1CH ₂ , 1OH			

1.400

1.488

1.180

1.088

0.780

0.468

1.244

0.936

0.624

1.724

1.416

Water:

Acetone:

3-Pentanone:

Dimethyl ether:

Diisopropylether:

Dimethylamine:

Diisopropylamine:

Diethylamine:

Acetonitrile:

Propionitrile:

Diethyl ether:

 $1H_2O$

ICH₃CO, ICH₃

1CH3, 1CH3O

2CH₃, 1CH₂CO, 1CH₂

2CH₃, 1CH₂, 1CH₂O

4CH3, 1CH, 1CH-O

 $2CH_3$, $1CH_2$, $1CH_2NH$

4CH₃, 1CH, 1CHNH

1CH₃,1CH₃NH

1CH₃, 1CH₂CN

1CH₃CN

7 "H₂O"

13 "CH2O"

15 "CNH"

19 "CCN"

9 "CH2CO"

 H_2O

CH₃CO

 CH_2CO

 CH_3O

 CH_2O

CH-O

CH₃NH

CH₂NH

CHNH

CH₃CN

 CH_2CN

17

19

20

25

26

27

32

33

34

41

42

0.9200

1.6724

1 4457

1.1450

0.9183

0.6908

1.4337

1.2070

0.9795

1.8701

1.6434

U V Usersen D Dave manage As Endenstand M Schiller and I Cruchting IEC Descends and 20

$$\ln \gamma_{i} = \ln \gamma_{i} (combinatorial) + \ln \gamma_{i} (residual)$$

$$\ln \gamma_{i} (combinatorial) = \ln \frac{\phi_{i}}{x_{i}} + \frac{z}{2} \ln \frac{\phi_{i}}{\phi_{i}} + l_{i} - \frac{\phi_{i}}{x_{i}} \sum_{j} x_{j} l_{j} \qquad l_{i} = (r_{i} - q_{i}) z / 2 - (r_{i} - 1)$$

calculation of combinatorial contribution

mole fraction of acetone: $x_A = 0.047$

segment volume for acetone: \mathbf{R}_{i} $r_{A} = 1 \times 0.9011 + 1 \times 1.6724 = 2.5735$

segment volume for pentane:

$$r_{p} = 2 \times 0.9011 + 3 \times 0.6744 = 3.8254$$

total volume at $x_A = 0.047$: $r_{tot} = 0.047 \times 2.5735 + 0.953 \times 3.8254 = 3.7666$

the segment volume fraction for acetone: $\phi_A = \frac{0.047 \times 2.5735}{3.7666} = 0.0321$

the segment fraction for pentane:

$$\phi_{P} = 1 - \phi_{A} = 0.9679$$

Residual error

area for acetone: Q_i $q_A = 1 \times 0.848 + 1 \times 1.488 = 2.336$

area for pentane: $q_P = 2 \times 0.848 + 3 \times 0.540 = 3.316$

total area at $x_A = 0.047$: $q_{tot} = 0.047 \times 2.336 + 0.953 \times 3.316 = 3.2699$

area fraction for acetone:

$$\theta_{A} = \frac{0.047 \times 2.336}{3.2699} = 0.0336$$

area fraction for pentane:

$$\theta_{P}=1-\theta_{A}=0.9664$$

$$l_{A} = \frac{Z}{2} (r_{A} - q_{A}) - (r_{A} - 1) = \frac{10}{2} (2.5735 - 2.336) - (2.5735 - 1) = -0.3860$$
$$l_{P} = \frac{10}{2} (3.8254 - 3.316) - (3.8254 - 1) = -0.2784$$

Molecule (i)	r _i	q_i	ϕ_i	$ heta_i$	l_i
acetone	2.5735	2.336	0.0321	0.0336	-0.3860
pentane	3.8254	3.316	0.9679	0.9664	-0.2784

combinatorial contribution

$$\ln \gamma_i (combinatorial) = \ln \frac{\phi_i}{x_i} + \frac{z}{2} q_i \ln \frac{\theta_i}{\phi_i} + l_i - \frac{\phi_i}{x_i} \sum_j x_j l_j$$

for acetone
$$\ln \gamma_{A} = \ln \frac{0.0321}{0.047} + \frac{10}{2} \times 2.336 \times \ln \frac{0.0336}{0.0321} - 0.386$$
$$- \frac{0.0321}{0.047} [0.047 \times (-0.386) + 0.953 \times (-0.2784)] = -0.0403$$

for pentane
$$\ln \gamma_{p} = \ln \frac{0.9679}{0.953} + \frac{10}{2} \times 3.316 \times \ln \frac{0.9664}{0.9679} - 0.2784$$

 $- \frac{0.9679}{0.953} [0.047 \times (-0.386) + 0.953 \times (-0.2784)] = -0.0007$
-0.0007110

. .

residual contribution

 $\ln \gamma_i (residual) = \sum_{\kappa} v_k^{(i)} [\ln \Gamma_k - \ln \Gamma_k^{(i)}] \qquad \text{Pure} - \text{Mixture}$

- $V_k^{(i)}$ is the number of k groups present in species i
- $\Gamma_k^{(i)}$ is the residual contribution to the activity coefficient of group k in a pure fluid of species *i*.

$$\ln \Gamma_{k} = Q_{k} \left[1 - \ln \left(\sum_{m} \Theta_{m} \Psi_{mk} \right) - \sum_{m} \frac{\Theta_{m} \Psi_{km}}{\sum_{n} \Theta_{n} \Psi_{nm}} \right] \qquad \Theta_{m} = \left\{ \begin{array}{c} \text{surface area} \\ \text{fraction of} \\ \text{group m} \end{array} \right\} = \frac{X_{m} Q_{m}}{\sum_{n} X_{n} Q_{n}}$$

$$\Psi_{mn} = \exp\left[\frac{-(u_{mn} - u_{nn})}{kT}\right] = \exp\left[\frac{-a_{mn}}{T}\right] \qquad \qquad X_m = \text{mole fraction of group } m \text{ in mixture}$$

	1	3	4	5	7	9	13	15	19	
CH ₂	0.00	61.13	76.50	986.50	1,318.00	476.40	251.50	255.70	597.0	
ACH	-11.12	0.00	167.00	636.10	903.80	25.77	32.14	122.80	212.5	
ACCH ₂	-69.70	-146.80	0.00	803.20	5,695.00	-52.10	213.10	-49.29	6,096.0	
OH	156.40	89.60	25.82	0.00	353.50	84.00	28.06	42.70	6.7	
H_2O	300.00	362.30	377.60	-229.10	0.00	-195.40	540.50	168.00	112.6	
CH ₂ CO	26.76	140.10	365.80	164.50	472.50	0.00	-103.60	-174.20	481.7	
CH_2O	83.36	52.13	65.69	237.70	-314.70	191.10	0.00	251.50	-18.5	
CNH	65.33	-22.31	223.00	-150.00	-448.20	394.60	-56.08	0.00	147.1	
CCN	24.82	-22.97	-138.40	185.40	242.80	-287.50	38.81	-108.50	0.0	

Table H.2 UNIFAC–VLE Interaction Parameters, a_{mk} , in kelvins[†]

K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, IEC Research, vol. 30, pp. 2352–2355, 199

from table H.2

$$\Psi_{mn} = \exp\left[\frac{-(u_{mn} - u_{mn})}{kT}\right] = \exp\left[\frac{-a_{mn}}{T}\right]$$

$$a_{1,9} = a_{CH3,CH3CO} = 476.4 \Rightarrow \Psi_{1,9} = \exp\left[\frac{-476.4}{307}\right] = 0.2119$$

$$a_{9,1} = a_{CH3CO,CH3} = 26.760 \Rightarrow \Psi_{9,1} = \exp\left[\frac{-26.76}{307}\right] = 0.9165$$

$$a_{1,1} = a_{9,9} = 0 \Rightarrow \Psi_{1,1} = \Psi_{9,9} = 1$$

$$\ln \gamma_i (residual) = \sum_{k} v_k^{(i)} [\ln \Gamma_k \cdot \ln \Gamma_k^{(i)}] \qquad \text{groups forming molecule -- pure}$$
Calculation of $\Gamma_k^{(i)}$

$$Q_i \text{ from table H.1}$$
we are dealing a pure substance!

$$\ln \Gamma_k^{(i)} = Q_k \left[1 - \ln\left(\sum_{m} \Theta_m \Psi_{mk}\right) - \sum_{m} \frac{\Theta_m \Psi_{km}}{\sum_{n} \Theta_n \Psi_{mm}}\right] \qquad \Theta_m = \left\{ \begin{array}{c} \text{surface area} \\ \text{fraction of} \\ \text{group } m \end{array} \right\} = \frac{X_m Q_m}{\sum_{n} X_n Q_n}$$

for pure acetone, there are only two different kinds of groups: CH_3 and CH_3O . Let CH_3 be labeled by 1 and CH_3O be labeled by 19.

$$\begin{split} X_{1}^{(4)} &= \frac{\nu_{1}^{(4)}}{\nu_{1}^{(4)} + \nu_{19}^{(4)}} = \frac{1}{1+1} = 0.5, \quad X_{9}^{(4)} = 0.5 \end{split} \qquad \begin{array}{l} \mbox{CH}_{3} \mbox{ in acetone} \\ \Theta_{1}^{(4)} &= \frac{0.5 \times 0.848}{0.5 \times 1.488 + 0.5 \times 0.848} = 0.363, \quad \Theta_{9}^{(4)} = 0.637 \qquad \mbox{Q}_{i} \mbox{ surface area} \\ \mbox{ln} \Gamma_{k}^{(i)} &= Q_{k} \Biggl[1 - \ln \Biggl(\sum_{m} \Theta_{m} \Psi_{mk} \Biggr) - \sum_{m} \frac{\Theta_{m} \Psi_{km}}{\sum_{n} \Theta_{n} \Psi_{mm}} \Biggr] \\ \mbox{ln} \Gamma_{1}^{(4)} &= 0.848 \Bigl[1 - \ln \Bigl(0.363 \times 1 + 0.637 \times 0.9165) \Bigr] \qquad \qquad \begin{array}{l} \Theta_{9}^{(4)} \Psi_{9,1} \\ &+ 0.848 \Biggl[- \Biggl(\frac{\Theta_{1}^{(4)} \Psi_{1,1}}{0.363 \times 1 + 0.637 \times 0.9165} + \frac{0.637 \times 0.2119}{0.363 \times 0.2119 + 0.637 \times 1} \Biggr) \Biggr] = 0.409 \\ \mbox{\Theta}_{1}^{(4)} \Psi_{1,9} & \Theta_{9}^{(4)} \Psi_{9,9} \\ \mbox{ln} \Gamma_{19}^{(4)} &= 1.488 \Bigl[1 - \ln \Bigl(0.363 \times 0.2119 + 0.637 \Bigr) \Biggr] \\ &+ 1.488 \Biggl[- \Bigl(\frac{0.363 \times 0.9165 \Theta_{1}^{(4)} \Psi_{9,1}}{0.363 \times 1 + 0.637 \times 0.9165} + \frac{0.637 \times 0.2119}{0.637 \times 0.2119 + 0.637 \times 1} \Biggr) \Biggr] = 0.139 \end{aligned}$$

for pure pentane, there are two kinds of subgroups, CH_3 and CH_2 and both subgroups belong to one main group. Let CH_2 be labeled by 2

$$X_1^{(P)} = \frac{V_1^{(P)}}{V_1^{(P)} + V_1^{(P)}} = \frac{2}{5} = 0.4, \quad X_2^{(P)} = 0.6$$

Since both subgroups are belong to the same main group

$$\ln\Gamma_1^{(P)} = \ln\Gamma_2^{(P)} = 0$$

Calculation of group residual activity at $x_A = 0.047$

$$\begin{aligned} &\ln \gamma_{i} (residual) = \sum_{\kappa} v_{k}^{\prime} (\ln \Gamma_{k} - \ln \Gamma_{k}^{(i)}) & \text{groups forming mixture} \\ &\ln \Gamma_{k} \text{ now we are dealing a mixture!} & \text{for CH}_{3} CO \\ &\text{for CH}_{3} (labeled 1) & \text{for CH}_{2} (labeled 2) & (labeled 9) \\ &X_{1} = \frac{0.047 \times 1 + 0.953 \times 2}{0.047 \times 2 + 0.953 \times 5} = 0.4019, \quad X_{2} = \frac{0.953 \times 3}{0.047 \times 2 + 0.953 \times 5} = 0.5884, \quad X_{9,i} = 0.0097 \\ &A & P & CH_{3} \\ &\Theta_{i} = \frac{0.4019 \times 0.848 + 0.5884 \times 0.540 + 0.0097 \times 1.488}{0.4019 \times 0.848 + 0.5884 \times 0.540 + 0.0097 \times 1.488} = 0.5064 \end{aligned}$$

The residual contributions to the activity coefficients follow

$$\ln \gamma_{i} (residual) = \sum_{K} \nu_{k}^{(i)} [\ln \Gamma_{k} - \ln \Gamma_{k}^{(i)}]$$

$$\min \gamma_{A}^{R} = 1 \times (1.45 \times 10^{-3} - 0.409) + 1 \times 2.09 - 0.139) = 1.54$$

$$\ln \gamma_{P}^{R} = 2 \times (1.45 \times 10^{-3} - 0.0) + 3 \times (2.21 - 0.0) = 5.68 \times 10^{-3}$$

Finally summing up the combinatorial and residual contributions

 $\ln \gamma_A = -0.0403 + 1.54 = 1.5$

$$\ln \gamma_{P} = -0.0007 + 5.68 \times 10^{-3} = 4.98 \times 10^{-3}$$

or

$$\gamma_A = 4.48 \quad \gamma_P = 1.0$$

experimental data:

$$\gamma_{A}=4.41, \quad \gamma_{P}=1.11$$