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Local Composition Models

*Unfortunately, the earlier approach cannot be extended to

systems of 3 or more components. For these cases, local

composition models are used to represent multi-component

systems.

— Wilson’s Theory
— Non-Random-Two-Liquid Theory (NRTL)
— Universal Quasichemical Theory (Uniquac)

*While more complex, these models have two advantages:

— the model parameters are temperature dependent

— the activity coefficients of species in multi-component liquids

can be calculated using information from binary data.
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Local Composition Models

Introductory Chemical Engineering Thermodynamics
J.Richard Elliott, Carl T. Lira

Composition around a “1” molecule Composition around a “2” molecule
X,; — mole fraction of “2’s” around “1” X1, — mole fraction of “1’s” around “2”
X1; — mole fraction of “1’s” around “1” X5, — mole fraction of “2’s” around “2”

local mole balance, x;; + x,; =1 local mole balance, x5, + x5, =1

Assume that the local compositions are given by some weighting factor, Qj,
relative to the overall compositions.

X211 Ko ‘12 X
— T 849 - = X_QIZ
X1 X X202 2

Therefore, if Q5> = Q¢ =1, the solution is random.



https://chethermo.net/

Local Composition Models

The local mole balance (outside 1’s):

Writing the local mole fractions x5 and x4 in terms of the overall mole

fractions, x4 and xp,

Substitute back to (1),

Rearrange,

Substitute back to (2),

X1
_ 1
T + x,Q
X1 T Xp8dng
X825
X1 =




Local Composition Models

Similar for type "2”

Xnn = *2
22—
x1§212+x2
o = X192,
12 —
x1£212+x2

Apply this local composition theory to properties using two-fluid theory,

1 o (2
g1 - )

(M-M'") = x,(M-M'?)
The local composition environment of the type 1 molecules determines the first
term, local composition environment of the type 2 molecules determines the
second term.



Introduce the local interaction energy (g;), allowing that the €4, = €54

Neglecting the excess volume of mixing relative to the other contributions,
which should be quite acceptable for liquids.

o (1) Ny
¢ (2) Ny

where N is the coordination number (total number of atoms in the
neighborhood of the jth species), z in regular solution. U9, reference.

then

: NA
U-U*% = T[XINcl(xllgll + X21521) + XZNCZ(XIZ‘C:IZ + X22€22)]

using H as we discussed in regular solution. Since excess volume
of mixing is neglected, U = H.



Local Composition Models

Recall,
Y _ M2 2 _

Notice that when x4 approaches unity, x, goes to zero, and x,4 goes to zero,
and x44 goes to one,

(U = U®) e = (Ng12)Ncye1, same as regular
i B - solution
(U = U purea = (N42)Ncpe
For ideal solution, is
. s . . N
(U-U"®) = x (U - Ulg)pwel +x,(U - Ulg)purez = —A[xlNcls11 + X5 NCyEsy]

2



Local Composition Models

Recall,

: NA
U-U"% = T[xlNcl(xllgll + X21521) + X2NC2(.X12812 + X22522)]

Subtracting we have,

: N
E is A
U =U-U" = j[xlNcl((xllgll + x21821)—811) + X, N, ((xh8 1, + x22822)—822)]

using (x;;—Dej =—x01811  (xpp—1)epy = —x1289

N
Arrivingat U" = TA[X1X21NC1(821 — £11) + Xx1oNey (815 — €0)]

Replace x»4, and Xyo,

U _ NA[X1X2921N01(821—811)_l_xleglchz(glz—gzzq

2 Xy +3629221 xlglz + X,




Wilson’s Equations for Binary Solution

Activity

Recall,

A=U-TS = A/RT =U/RT - S/R
then,
7 9AIRT)) =l(&> _ﬂ_1<3_5) _ & U 16U
\ Jor ), RT\or), Rr* R\6T)y, R RT RT RT
We have,

T AE E E E

T
f d(—) = 14__A_ — —f U_sz
» \RT) ~ RT RT|_ o RT

where A¥/(RT)|., is the infinite temperature limit at the given liquid density
independent of temperature but possibly dependent on composition or density.

using H willbe G =H -TS



Wilson made a bold assumption regarding the temperature dependence of Q.

V. ~N,Nc(¢g;.—¢) V. ~A..
= A= = J U J) = ! L
i = i VjeXp< 2RT ) VjeXp<RT)
Substitute back and integrate,
A" A7
RT - —x;In(®,; + ®,exp(-A,/RT)) —x,In(P exp(-A,;/RT) + D,) + T

A convenient simplifying assumption before proceeding further is that GE = AE.
This corresponds to neglecting the excess volume of mixing, AVE relative to the
other contributions and is really quite acceptable for liquids.

Separate GE/RT into an energetic part known as the residual contribution, that
vanishes at infinite temperature or when €15 — €20 =0 and €4 — €44 =0, and a
size/shape part known as the combinatorial contribution, that represents the
infinite temperature limit at the liquid density.



Wilson’s Equations for Binary
Solution Activity

Therefore, residual contribution
(GE/RT)RES = —x|In(®; + D,exp(-A,,/RT)) — x,In(®exp(-A,/RT) + D,)

For the combinatorial contribution, Wilson used Flory’s equation,

G"/(RT)|_=(GE/RTYOME = x,In(®,/x,) + x,In(Dy/x,)

Combine, the above, Wilson’s equation becomes,
o,

G In(®, +® “An In(® ~Aa g mol, g
= = —x, n( L+ 2exp<————>>—x2 n( lexp<——> + 2>+x1 n— + x,In—=
RT RT RT X, X

Simplified version, when @, = x;:

E
G
v —xIn(x; +x,A ) —x,In(x; Ay +x,)




Wilson’s Equations for Binary
Solution Activity

*A versatile and reasonably accurate model of excess Gibbs
Energy was developed by Wilson in 1964. For a binary system,
GE is provided by:

= x, In(x, + x,A,) — x, In(x, + x,A,))

" eXpl:_a12:| A, = K Xpl:_a21i|
V1 RT v, RT

V, is the molar volume at T of the pure component i.

G _
RT
A

a; is determined from experimental data.
The notation varies greatly between publications. This includes,

- 012 (}\112 ;\11), 021 (7»12 7\.22) that yOu Wl" encounter |n HOImeS,
M.J. and M.V. Winkle (1970) Ind. Eng. Chem. 62, 21-21.



Wilson’s Equations for Binary
Solution Activity

*Recall _ E
RTIny, =G = 8';G
ni

T,P,nj

*When applied to Wilson’s :

Iny, ==In(x, + x,A,) + xz( Ao My J

X +x,A, x,+xA,,

A
Iny, =—In(x, + x,A,,) — xl( Ap 21 j
X, +x,N,  x,+xA,,



Wilson’s Equations for Multi-
Component Mixtures

*The strength of Wilson’s approach resides in its ability to describe multi-
component (3+) mixtures using binary data.

— Experimental data of the mixture of interest (ie. acetone, ethanol, benzene)
is not required

— We only need data (or parameters) for acetone-ethanol, acetone-benzene
and ethanol-benzene mixtures

*The excess Gibbs energy for multicomponent mixtures is written:

— —Zx ln(ij U

*and the activity coefficients become:

Iny, —l—anx] . ZZX A
7

‘where A; = 1 for i=j. Summations are over all species.



Wilson’s Equations for
3-Component Mixtures

*For three component systems, activity coefficients can be

calculated from the following relationship:
x A

X+ XA, +x,A
XA,

XAy X, + XA,
x5,

XAy +x,A5, +x,

Iny, =1=In(x A; + A, +XA,5) =

*Model coefficients are defined as (A;; = 1 for i=j):

A VJ _aij
. = ——¢€X
74 P RT

1




Non-Random-Two-Liquid Theory (NRTL)

NRTL model (Non-Random Two-Liquid; Renon and Prausnitz,

1968)
— For binary systems:

2
G, n 7,,G, }

Iny, =x2|
" { (545G, )

2
Iny, 12( G, j + 7,,G,,
x, +x,G, (x1 +x,G,, )2

local composition
for non-random

where G, = exp{%ﬂ; G,, alz(%ﬂ some Wilson

— @4, , the so-called non-randomness parameter

— Good for both miscible and partially miscible systems



Non-Random-Two-Liquid Theory (NRTL)

 For aliquid, in which the local distribution is random around
the center molecule, the parameter a,, = 0. In that case the
equations reduce to the one-parameter Margules activity model

Iny, = xi[le T 2'12]: Ax22
Iny, = xlz[z-lz + 2'21]: Ax12
« The NRTL parameters are fitted to activity coefficients that have

been derived from experimentally determined phase
equilibrium data

 Noteworthy is that for the same liquid mixture there might exist
several NRTL parameter sets. It depends from the kind of phase
equilibrium (i.e. solid-liquid, liquid-liquid, vapor-liquid).

non-unique results from simple data fitting



Universal Quasichemical Theory

 UNIQUAC (Abrams and Prausnitz, 1975)

* In the UNIQUAC model the activity coefficients of the it"
component of a two component mixture are described by a

combinatorial and a residual contribution

Iny, = lninG_)n%R

more Wilson

* The first is an entropic term quantifying the deviation from
ideal solubility as a result of differences in molecule shape.
The latter is an enthalpic correction caused by the change in
interacting forces between different molecules upon mixing.




G"/(RT)| = (GE/RT)COMB = x|In(®,/x,) + x,In(D,/x,)

e Combinatorial contribution size and sites

(OF
Z V; V; -
lnyl-c:(1—Vi+ani)+§qi(1—Fz+lnFZ) lnxi
— V,, is the Volume fraction per mixture mole fraction for the it"
component

— F,, is the surface area fraction per mixture molar fraction for
the ith component

— 2=10

* The excess entropy y¢ is calculated exclusively from
the pure chemical parameters, using the relative Van

der Waals volumes r; and surface areas q; of the pure
chemicals.



(GE/RDRES = —_x,In(®, + ®,exp(-A;,/RT)) - x,In(® exp(-A,/RT) + D)

e Residual contribution interaction
Zq
Iny*=gq. i _ Z O with sites correction
| | qu X quxkz-k]
—Auij/RT
T.. =¢€

y

Au; [J/mol] is the binary interaction energy parameter.
Theory defines Auy;; = u;; - u;, and Au;; = u;; - u;;, where u;; is the

interaction energy between moIecuIes | and je sub means

* Data is derived from experimental activity ocal
composition
coefficients, or from phase diagrams



The UNIFAC model

A. Fredenslund, R.L. Jones, and J.M. Prausnitz, AIChE Journal (Vol.21, No.6 1975)

Iny, =In Q/Z.C (combinatorial ) +In Q/Z.R (residual ) _
Iny (combinatorial ) = ln% + gq" lni’ +1 - % ; x1 _ S?\lraneUa:C
’ Model

with [ =(r—q)z/2-(r=1) Iny (residual)=3v"[InT, —InT" |+

(i)

Vk

o is the residual contribution to the activity coefficient of group % in a pure
k  fluid of species i.

is the number of & groups present in species i

surface area
Inl', =0, 1—1n(2®m‘11mk)—2 ©,%., 0 = fraction of _ X,0,
! 5 Z@)qjm group m >X O
—(u,,—u,) ~a . .
Y =exp L = eXp| —™ X =mole fraction of group m in
kT r mixture



z
L = ("é") (rg — qg) — (r2— 1)
For component 2, y; can be found by interchanging sub-
scripts 1 and 2.

Numerical results for In y are insensitive to the choice
of coordination number z provided a reasonable value
(6 = z = 12) is chosen. However, adjustable parameters
721 and 7,5 depend on that choice. In this work we have

consistently used z = 10.

kT T

D.S. Abrams and J.M. Prausnitz, AIChE J. Vol. 21:116-128, 1975



Example: obtain activity coefficients for the acetone/n-pentane system
at 307 K and x,..;,.=0.047.

s
/
\

~

sCr{CHap{Craj o<,

Group identification

Molecules (i)| name |Main No.| Sec. No v R, O,
Acetone (1) CHs 1 1 1 0.9011 0.848
CH;CO 9 19 1 1.6724 | 1.488
n-pentane CH, 1 2 0.9011 0.848
CH, 1 2 3 0.6744 | 0.540

“Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures”

AIChE Journal (Vol. 21, No. 6, pp 1086-1099)




S A e e

Examples of moleculesand their
Main group Subgroup k Ry Ok constituent groups
1“CH," CHj 1 Q901D 848 n-Butane: 2CH3,2CH;
CH; 2 Q.674D (3540 Isobutane: 3CH3, ICH
CH 3 04469 0228 22-Dimethyl
C 4 02195 0.000 propane: 4CH3, 1C
3"ACH ACH 10 05313 0400 Benzene: 6ACH
(AC = aromatic carbon)
4"ACCH;” ACCH3 12 12663 0968 Toluene: 5ACH, 1ACCH3
ACCH; 13 10396 0.660 Ethylbenzene: 1CH3,5ACH, 1ACCH>
5"OH OH 15 10000 1200 Ethanol: 1CH3, ICH;, 10H
7T"*H, 0" HyO 17 09200 1400 Water: 1H;0
9“CHCO” CH3CO 19 @ @ Acetone: ICH3CO, 1CH;
CH,CO 20 14457 1.180 3-Pentanone: 2CH3, 1CH,CO, ICH;
13*CH,0O" CH;0 25 1.1450 1.088 Dimethyl ether: 1CH3, 1CH;0
CH;O 26 09183 0.780 Diethyl ether: 2CHj3, 1CH;,1CH,0
CH-O 27  0.6908 0468 Dusopropylether: 4CHj, ICH,ICH-O
15"CNH" CH;NH 32 14337 1244 Dimethylamine: 1CH;3,1CH3NH
CH;NH 33 12070 0936 Diethylamine: 2CH3, 1CH,, ICH;NH
CHNH 34 09795 0624 Dusopropylamme: 4CHs,1CH, ICHNH
19 "CCN" CH;CN 41 18701 1724  Acetonitrile: 1ICH3CN
CH;CN 42 16434 1416 Propionitnle: ICHz, 1CH,CN

1Y 77 T . D D A T4 AR e AT 11 TN T T .1 AN



Iny. =Iny (combinatorial)+In y (residual)

Iny (combinatorial ) = lnﬁ+ilng +1/ —ﬁijlj Il =(r—q)z/2—(r—-1)

x 2 ¢ X,
calculation of combinatorial contribution

mole fraction of acetone: x , = 0.047

segment volume for acetone: R; r,=1x0.9011+1x1.6724 =2.5735

segment volume for pentane: r,=2x0.9011+3x0.6744 =3.8254

total volume at x,= 0.047: r=0.047x2.5735+0.953x3.8254 = 3.7666

0.047x2.5735

: . — =0.0321
the segment volume fraction for acetone: P, 3 7666

the segment fraction for pentane: ¢, =1-¢,=0.9679

N

Residual error



area for acetone: Q; ¢, =1x0.848+1x1.488=2.336
area for pentane: ¢, =2x0.848+3x0.540 =3.316

total area at x,=0.047: ¢, =0.047x2.336+0.953x3.316 =3.2699
0.047x2.336

area fraction for acetone: 0 = : =0.0336
! 3.2699
area fraction for pentane: 0,=1-0,=0.9664
= %(g —q,)—(r,—1) = (2 5735-2.336)—(2.5735-1) = —0.3860

[

P

120 (3.8254-3.316)— (3.8254—1): ~0.2784

Molecule (i) r; q; ) o

acetone 2.5735 2.336 0.0321 0.0336 -0.3860

pentane 3.8254 3.316 0.9679 0.9664 -0.2784




combinatorial contribution

Iny (combinatorial) = In"*

for acetone

for pentane

¢ +Zq lng +1/ —£2xl
x 2 1) X,
Iny, =In 00321 10, 5 336x1n 0330 _ 386
0.047 2 0.0321
~0.0321
—==7210.047 x (- 0.386)+0.953 x (— 0.2784)| = —0.0403
0.047
Iny, =In 09679 19 3 316x1n 2200 _ 2784
0953 2 0.9679
09679

0053 [0.047 x(—0.386)+0.953 x (- 0.2784)] = —0.0007

-0.0007110




residual contribution

In y (residual)=Yv"[InT, —InT" ] Pure — Mixture

v is the number of & groups present in species i

[ s the residual contribution to the activity coefficient of group & in a pure fluid of

species 1.
O W surface area X
InI’, =0, 1—1n(2®m‘lfmk)—2m—’"" ® =< fraction of _ X9,
: " Z®qjm group m >X O
v - exp[_ (um —u, )} _ exp[_ amn} X = mple fraction of group m in
m kT T mixture

" LI[ main group labels

()



Table H.2 UNIFAC-VLE Interaction Parameters, a,, in kelvins'

1 3 4 5 7 9 13 15 19
CH, 0.00 61.13 76.50 986.50 1,318.00 Q76.40 ) 251.50 255.70 597.0(
ACH —11.12 0.00 167.00 636.10 903.80 by o4 32.14 122.80 212.5(
ACCH, -69.70 —146.80 0.00 803.20 5,695.00 —52.10 213.10 —49.20 6,096.0(
OH 156.40 89.60 25.82 0.00 353.50 84.00 28.06 42.70 6.7
H,O 3068-60 362.30 37760 —=229.10 0.00 —=19540 540.50 168.00 [12.6(
'CH,CO @ 140.10 365.80 164.50 472.50 000 —-103.60 —174.20 4381.7¢
CH,;0 83.36 52.13 65.69 237,70  —314.70 191.10 0.00 251.50 —18.5
'CNH 65.33 —-22.31 223.00 -=150.00 —448.20 39460  —56.08 (.00 147.1(
' CCN 2482  -2297 —13840 185.40 242.80 —287.50 38.81 —108.50 0.0(

. K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, TEC Research, vol. 30, pp. 2352-2355,199



from table H.2 ¥ = exp[_ (, —u, )} — exp[_ amn}

@D TN

A, =0y ong =4764= P = exp[_ 476'4} =0.2119
’ | | 307
Gy, = Qoo = 26.760 = ¥, = exp[_ ;?776} =0.9165

al,l :a9,9 :O: qj,l :‘P9,9 :1

1

NS

groups forming molecule -- pure

Iny (residual)= Y v [InT, @

Calculation of I’ Q, from table H.1

we are dealing a pure substance! X, = mplte fraction of group m in
mixture

InI" =0, l—ln(Z(*Dm\Pmk)—Z 9. %, surface area ¥
" " Z®‘Pm ® =< fraction of — m_Qm

group m >X 0

n

for pure acetone, there are only two different kinds of groups: CH; and
CH30. Let CHj; be labeled by 1 and CH;0 be labeled by 19.



A
V()

1

X = ! — =05, x¥W=0.5 CHs in acetone
R | °
0.5%0.848
O = =0.363, 0W=0.637 Q surface area
0.5x1.488+0.5x0.848 9 u
| O %
InT"" = l—ln( O v )— e
" Q{ SRR %@;PJ
0"Y oW\, ,
InT* = 0.848[1 - In(0.363x 1+ 0.637 % 0. 9165)] oMWY,
0",
+0.848[_( 363x1 . 0.637x0.2119 j 0,409
0.363x1+0.637x0.9165 0.363x0.2119+0.637 x1
®(A)LP @(()A) LI19,1 ®iA)LPl,g @(()A) LI19,9
ST
InT'* =1.488[1—1In(0. 363x0.2119 + 0.637)] oMY,

+1.488[—(

0.363x0.9165

A
0¥,

+
0.363x1+0.637x0.9165 0.363x0.2119+0.637

0.637 x0. 2119 ﬂ:o.139



for pure pentane, there are two kinds of subgroups, CH; and CH, and both
subgroups belong to one main group. Let CH, be labeled by 2

y 2
XI(P) ) 1 " = 0.4, Xz(P) =0.6
v, +v, 5

Since both subgroups are belong to the same main group
InT'"” =In” =0
Calculation of group residual activity at x,= 0.047

Iny (residual) =Y. v,fln o]

InT;, now we are dealing a mixture!

groups forming mixture

for CH3;CO
for CHj3(labeled 1) for CHy(labeled 2) (labeled 9)
X = 0.047x14+0.953x2 04019, X, = 0.953x3 05884, X, =0.0097
0.047x2+0.953x%x35 0.047x2+0.953x%x5 )
A P CHsj
O, = 0.20190.528 =0.5064 surface area
0.4019x0.848+0.5884x0.540+0.0097 x1.488

CH; CH, CH,CO 33




CH,

0. - 0.5884x0.540 0471
0.4019x0.848 +0.5884 x 0.540+0.0097 x1.488
0. — 0.0097x1.488 2250 00214
> 7 0.4019x0.848 + 0.5884x0.540 + 0.0097x1.488
0 V¥
Inl', = l—ln( QI )— —n
0,Wi1| 0,W,,] SCRCH Y =1
InT" =0.848[1-1In(0.5064 + 0.4721+0.0214x0.9165)] EROP
0.848 0.5064 +0.4721 N 0.0214%0.2119
1 0.5064+0.4721+0.0214x0.9165  (0.5064 +0.4721)x0.2119+0.0214
_ 3 0, ¥, 0+ 0,¥ QoW
=1.45x%10 0,9, [0,%,, 0%, , 1119 2129 9199
InT, =(0.540)l — In(0.5064 + 0.4721+0.0214x 0.9165)] 0¥, o
0,540 0.5064 +0.4721 ) 0.0214%0.2119
"~ 10.5064+0.4721+0.0214x0.9165  (0.5064 +0.4721)x0.2119+0.0214

=9.26x10"

|



0,%¥ 9 0,%29 099 9

InTy = 1.488[1 — In((0.5064 + 0.4721)0.2119 + 0.0214)] OgWs o
(0.5064 + 0.4721)0.9165 0.0214
—1.488 (0.5064 + 0.4721)0.9165 + 0.0214 | (0.5064 + 0.4721)0.2119 + 0.0214
= 2.091 0,%¥ 4 0,% , 0% 0,%¥; 9

The residual contributions to the activity coefficients follow
Iny (residual)=>v"[InT, —InT"]

miX - pure mix - pure
Iny* =1x(1.45x10° —0.409)+1x 2.09 -0.139)= 1.54

Iny* =2x(1.45%10"—0.0)+3x(2.21-0.0)=5.68x10"

Finally summing up the combinatorial and residual contributions
Iny, = —0.0403 + 1.54 = 1.5

Iny, =-0.0007+5.68x10° =4.98x10~

or |y,= 448 y,=101

experimental data: y, =441, y,=1.11




