Robust Control System

CheEng@TongjiU Min Huang, PhD

Quiz

Find $H(s)=\frac{C(s)}{R(s)}, N(s)=\frac{C(s)}{D(s)}$ and sensitivity $s_{k}^{H(s)}$. What
you have found?

$$
\begin{aligned}
& \mathrm{H}(\mathrm{~s})=\frac{\mathrm{C}(\mathrm{~s})}{\mathrm{R}(\mathrm{~s})}=\frac{\mathrm{G}_{\mathrm{c} 1}(\mathrm{~s}) \mathrm{G}_{\mathrm{c} 2}(\mathrm{~s}) \mathrm{KG}_{0}(\mathrm{~s})}{1+\mathrm{KG}_{\mathrm{c} 2}(\mathrm{~s}) \mathrm{G}_{0}(\mathrm{~s})} \\
& \mathrm{N}(\mathrm{~s})=\frac{\mathrm{C}(\mathrm{~s})}{\mathrm{D}(\mathrm{~s})}=\frac{1}{1+\mathrm{KG}_{\mathrm{c} 2}(\mathrm{~s}) \mathrm{G}_{0}(\mathrm{~s})} \\
& \mathrm{S}_{\mathrm{K}}^{\mathrm{H}(\mathrm{~s})}=\frac{\mathrm{dH}(\mathrm{~s})}{\mathrm{H}(\mathrm{~s})} \\
& \frac{\mathrm{dK}}{\mathrm{~K}}=\frac{\mathrm{K}}{\mathrm{H}(\mathrm{~s})} \frac{\mathrm{dH}(\mathrm{~s})}{\mathrm{dK}} \\
& \frac{\mathrm{dH}}{\mathrm{dK}}=\frac{\mathbf{G}_{\mathrm{c} 1}(\mathrm{~s}) \mathrm{G}_{\mathrm{c} 2}(\mathrm{~s}) \mathrm{G}_{0}(\mathrm{~s})}{\left[1+\mathrm{KG}_{\mathrm{c} 2}(\mathrm{~s}) \mathrm{G}_{0}(\mathrm{~s})\right]^{2}}
\end{aligned}
$$

$$
=\frac{1}{1+K^{\mathrm{c} 2}(\mathrm{~s}) \mathrm{G}_{\mathrm{o}}(\mathrm{~s})}
$$

Large K is good, but how large can we have? Need to consider stability !

Quiz

Construct a Root-locus plot for the system

$$
H(s)=\frac{C(s)}{R(s)}=\frac{G_{c 1}(s) G_{c 2}(s) K G_{0}(s)}{1+K_{c 2}(s) G_{0}(s)}
$$

Set $\mathrm{G}_{\mathrm{c} 1}$ and $\mathrm{G}_{\mathrm{c} 2}$ equal 1, and

$$
K G_{0}(s)=\frac{K(7+s)}{s(1+s)(5+s)(20+s)}
$$

How to find the complex conjugate roots with a given K ? Do it now for $K=142$.

K	Damping ratio	Roots of characteristic equation
248	0.277	$-5.1640,-20.0649,-0.3856 \pm j 1.3348$
142	0.444	$-5.0878,-20.0325,-0.4398 \pm j 0.8875$
71	0.666	$-5.0456,-20.01629,-0.4691 \pm j 0.5245$

- If we place two zeros at (or near) the desired complex, conjugate-loop pools, for example -0.4398 $\pm \mathrm{j} 0.8875$,
- set:

$$
\mathbf{G}_{\mathrm{c} 2}(\mathrm{~s})=\frac{(\mathrm{s}+0.4398+\mathrm{j} 0.8875)(\mathrm{s}+0.4398-\mathrm{j} 0.8875)}{0.98}
$$

- what will happen ?
- Simplify,

$$
\begin{aligned}
& \mathbf{G}_{\mathrm{c} 2}(\mathrm{~s})=\frac{\mathrm{s}^{2}+0.88 \mathrm{~s}+0.98}{0.98} \\
& \mathbf{G}_{\mathrm{c} 2}(\mathrm{~s})=\mathrm{s}^{2}+0.88 \mathrm{~s}+1
\end{aligned}
$$

- Keeping $\mathbf{G c}_{\mathrm{c} 1}=1$,

$$
\mathrm{KG}_{\mathrm{c} 2}(\mathrm{~s}) \mathrm{G}_{0}(\mathrm{~s})=\frac{\mathrm{K}(7+\mathrm{s})\left(\mathrm{s}^{2}+0.88 \mathrm{~s}+1\right)}{\mathrm{s}(1+\mathrm{s})(5+\mathrm{s})(20+\mathrm{s})}
$$

K	Damping ratio	Roots of characteristic equation
248	0.548	$-6.3715,-47.3367,-0.4459 \pm j 0.6814$
142	0.644	$-6.0358,-33.3566,-0.4538 \pm j 0.5392$
71	0.808	$-5.6914,-26.5282,-0.4652 \pm j 0.3387$

- Not to change the characteristic of the system, by,
- Setting, $\quad G_{c 1}(s)=\frac{1}{s^{2}+0.88 s+1}$

QUIZ

$$
\mathrm{KG}_{0}(\mathrm{~s})=\frac{\mathrm{K}(12+\mathrm{s})}{\mathrm{s}(2+\mathrm{s})(8+\mathrm{s})(25+\mathrm{s})}
$$

$$
K=75,150 \text { and } 300
$$

place zeros to cancel the poles of the system where $k=150$

$$
\begin{aligned}
& \mathbf{G}_{\mathrm{c} 2}(\mathrm{~s})=\frac{(\mathrm{s}+0.6219+\mathrm{j} 2.8263)(\mathrm{s}+0.6219-\mathrm{j} 2.8263)}{8.3463} \\
& \mathbf{G}_{\mathrm{c} 2}(\mathrm{~s})=\frac{\mathrm{s}^{2}+1.2439 \mathrm{~s}+8.3463}{8.3463}
\end{aligned}
$$

$$
\begin{aligned}
& K_{c 2}(s) G_{0}(s)=K \frac{\left(s^{2}+1.2439 s+8.3463\right)}{8.3463} \frac{(12+s)}{s(2+s)(8+s)(25+s)} \\
& G_{c 1}(s)=\frac{8.3463}{s^{2}+1.2439 s+8.3463}
\end{aligned}
$$

Homework XII

