Vapor Liquid Equilibrium

Huang Min, PhD
Chemical Engineering
Tongji University

- Phase equilibria
- VLE, VLLE
- Thermodynamic models
- $\gamma-\phi$ (Activity coefficient models)
- $\phi-\phi$ (Equations of state)
- At phase equilibria:

$$
\begin{aligned}
& -T^{I}=T^{I I}=T^{I I I}=\ldots=T \\
& -p^{I}=p^{I I}=p^{I I I}=\ldots=p \\
& -f_{i}^{I}\left(T, p, x_{i}^{I}\right)=f_{i}^{I I}\left(T, p, x_{i}^{I I}\right)=f_{i}^{I I I}\left(T, p, x_{i}^{I i i}\right)=. . \text { for } i=1, \\
& 2, \ldots, c
\end{aligned}
$$

- Criteria for systems at VLE:
$-f_{i}^{V}=f_{i}^{L} \quad$ for $i=1,2, \ldots, c$
- One-model method:

$$
f_{i}^{V}=\phi_{i}^{V} y_{i} p=f_{i}^{L}=\phi_{i}^{L} x_{i} p
$$

Both the vapor phase and liquid phase fugacities are calculated from an equation of state.

- Two-model method:

$$
f_{i}^{v}=\phi_{i}^{v} y_{i} p=f_{i}^{L}=\gamma_{i} x_{i} f_{i}^{o L}
$$

Vapor phase fugacity is calculated from an equation of state and liquid phase fugacity from an activity coefficient model.

The Partial Molar Gibbs Free Energy and Fugacity-Revisit

- Recall

$$
d G=-S d T+V d p+\sum_{i=1}^{c} \bar{G}_{i} d N_{i}
$$

- Then $\frac{\partial}{\partial N_{i}}\left(\left(\frac{\partial G}{\partial T}\right)_{p, N_{j}}\right)_{T, p, N_{j \neq i}}=-\left(\frac{\partial S}{\partial N_{i}}\right)_{T, p, N_{j \neq i}}=-\bar{S}_{i}=\frac{\partial}{\partial T}\left(\left(\frac{\partial G}{\partial N_{i}}\right)_{T, p, N_{j \neq i}}\right)=\left(\frac{\partial \bar{G}_{i}}{\partial T}\right)_{p, N}{ }_{p, N_{j}}$

$$
\frac{\partial}{\partial N_{i}}\left(\left(\frac{\partial G}{\partial p}\right)_{T, N_{j}}\right)_{T, p, N_{j \neq i}}=\left(\frac{\partial V}{\partial N_{i}}\right)_{T, p, N_{j \neq i}}=\bar{V}_{i}=\frac{\partial}{\partial p}\left(\left(\frac{\partial G}{\partial N_{i}}\right)_{T, p, N_{j \neq i}}\right)_{T, N}=\left(\frac{\partial \bar{G}_{i}}{\partial p}\right)_{T, N_{j}}
$$

- So

$$
\bar{s}_{1}=-\left(\frac{\partial \overline{G_{1}}}{\partial T}\right)_{\ldots, n} \text { and }
$$

$$
\bar{v}_{r}=\left(\frac{\partial \bar{G}_{i}}{\partial p}\right)_{r, v, i} \quad \leftarrow \text { Why? }
$$

- Therefore $\bar{G}_{i}\left(T_{1}, p_{2}, \underline{x}\right)-\bar{G}_{i}\left(T_{1}, p_{1}, \underline{x}\right)=\int_{p_{1}}^{p_{2}}\left(\frac{\partial \bar{G}_{i}}{\partial p}\right)_{T_{, N},} d p=\int_{p_{1}}^{p_{2}} \bar{V}_{i} d p$ for isothermal change at $T=T_{1}$

The Partial Molar Gibbs Free Energy and Fugacity -Revisit

- Define the fugacity of species \boldsymbol{i} in a mixture

$$
\begin{array}{rlrl}
\hat{f}_{i}(T, p, x) & =p_{i} \exp \left\{\frac{\bar{G}_{i}(T, p, x)-\bar{G}_{i}{ }^{I G}(T, p, x)}{R T}\right\} & \quad \begin{array}{|}
\bar{G}_{\bar{\prime}}=R T \ln \hat{\boldsymbol{\phi}}_{i}
\end{array} \\
& =x_{i} p \exp \left\{\frac{\bar{G}_{i}(T, p, x)-\bar{G}_{i}{ }^{\prime G}(T, p, x)}{R T}\right\}=x_{i} p \exp \left\{\frac{1}{R T} \int_{0}^{p}\left(\bar{V}_{i}-\bar{V}_{i}^{I G}\right) d p\right.
\end{array}
$$

- so that as $p \rightarrow 0, \quad \hat{f}_{i} \rightarrow x_{i} p=p_{i}$
- The fugacity coefficient for a component in a mixture

$$
\begin{aligned}
\hat{\phi}_{i}=\frac{\hat{f}_{i}}{x_{i} p} & =\exp \left\{\frac{\bar{G}_{i}(T, p, x)-\bar{G}_{i}^{I G}(T, p, x)}{R T}\right\} \\
& =\exp \left\{\frac{1}{R T} \int_{0}^{p}\left(\bar{V}_{i}-\bar{V}_{i}^{I G}\right) d p\right\}
\end{aligned}
$$

The Partial Molar Gibbs Free Energy and Fugacity—Revisit

$$
\begin{aligned}
& { }_{n c}\left(\frac{\partial \ln \bar{f}}{\partial p}\right)_{N}=\left(\frac{\partial \bar{o}}{\partial p}\right)_{N o}=\bar{v}
\end{aligned}
$$

$$
R T\left(\frac{\partial \ln f}{\partial p}\right)_{T}=\left(\frac{\partial \underline{G}}{\partial p}\right)_{T}=\underline{V}
$$

for pure component

- To relate the fugacity of pure component i to the fugacity of component i in a mixture

$$
\begin{aligned}
& R T\left\{\int_{0}^{p}\left(\frac{\partial \ln \hat{f}_{i}}{\partial P}\right)_{T, \underline{x}} d p-\int_{0}^{p}\left(\frac{\partial \ln f_{i}}{\partial P}\right)_{T} d p\right\} \\
& =R T\left\{\int_{0}^{p} d \ln \hat{f}_{i}-\int_{0}^{p} d \ln f_{i}\right\}=R T\left\{\ln \frac{\hat{f}_{i}(T, p, \underline{x})}{\hat{f_{i}}(T, 0, \underline{x})}\right\}-R T\left\{\ln \frac{f_{i}(T, p)}{f_{i}(T, 0)}\right\} \\
& =\int_{0}^{0}\left(V_{i}-V_{-i}\right) d p
\end{aligned}
$$

- As

$$
p \rightarrow 0, \hat{f}_{i} \rightarrow p_{i}=p x_{i} \text { and } f_{i} \rightarrow p
$$

- thus $R T\left\{\ln \frac{\hat{f}_{i}(T, p, x)}{x_{i} f_{i}(T, p)}\right\}=\int_{0}^{p}\left(\bar{V}_{i}-V_{-i}\right) d p$

The Partial Molar Gibbs Free Energy and Fugacity-Revisit

- Therefore, for a mixture in which $\bar{V}_{i}=\underline{v}$, same as earlier,
- $\hat{f}_{1}=f_{i} x_{i}$ true for ideal gas mixtures and ideal solutions.
- Therefore,

$$
\hat{\phi}_{i}=\frac{\hat{f}_{i}}{x_{i} p}=\exp \left\{\frac{\bar{G}_{i}(T, p, x)-\bar{G}_{i}^{I G}(T, p, x)}{R T}\right\}
$$

$$
\left\{\frac{\left.\partial \ln \left(\hat{f}_{i} / x_{i} p\right)\right\rceil}{\partial T}\right\rfloor_{p, \underline{x}}=\left.\frac{\partial}{\partial T}\right|_{p, \underline{x}}\left\{\frac{\hat{G}_{i}(T, p, \underline{x})-\bar{G}_{i}(T, p, \underline{x})}{R T}\right\}
$$

$$
d G=-S d H-V \not D+\sum_{i=1}^{x} \mu_{i} d h_{i}
$$

$$
=-\frac{\bar{G}_{i}-\bar{G}_{i}}{R T^{2}}+\frac{1}{R T}\left\{\left(\frac{\partial \bar{G}_{i}}{\partial T}\right)_{p, \underline{x}}-\left(\frac{\partial G_{i}}{\partial T}\right)_{p, \underline{\underline{I}}}\right\}
$$

$$
=-\frac{1}{R T^{2}}\left[\bar{G}_{i}-\bar{G}_{i}-T\left(\bar{S}_{i}-\bar{S}_{i}{ }^{I G}\right)\right]=\left[\frac{\bar{H}_{i}-\bar{H}_{i}^{I G}}{R T^{2}}=\left\lceil\frac{\partial \ln \phi_{i}}{\partial T}\right]_{p, \underline{x}}\right.
$$

Phase equilibrium criteria in terms of fugacity

- Let $\Delta \bar{G}_{i}=\bar{G}_{i}\left(T, p, \underline{x}^{I I}\right)-\bar{G}_{i}\left(T, p, \underline{x}^{I}\right)$
- with $\quad \bar{G}_{i}(T, p, \underline{x})=\bar{G}_{i}{ }^{I G}(T, p, \underline{x})+R T \ln \phi_{i}(T, p, \underline{x}) \quad \bar{G}_{i}^{R}=R T \ln \hat{\boldsymbol{\phi}}_{i}$
where superscripts I and II denotes phases of different composition
- Recall ${\underset{G}{i}}_{G_{i}(T, P, \underline{x})=\underline{G}_{i}^{\text {pre }}}(T, P)+R T \ln x_{i}$ then,
$\bar{G}_{i}\left(T, P, \underline{x}^{u}\right)-\bar{G}_{i}\left(T, p, \underline{x}^{\prime}\right)=\bar{G}_{i}^{\prime \sigma}\left(T, p, \underline{x}^{\prime}\right)+R T \ln \phi_{i}^{\prime}\left(T, p, \underline{x}^{\prime}\right)$

$$
\begin{aligned}
& -\bar{G}_{i}^{-I G}\left(T, p, \underline{x}^{\prime \prime}\right)-R T \ln \phi_{i}^{\prime \prime}\left(T, p, \underline{x}^{\prime \prime}\right) \\
& =\underline{G}_{i}^{\text {pene }}(T, p)+R T \ln x_{i}^{\prime}+R T \ln \phi_{i}^{\prime}\left(T, p, \underline{x}^{\prime}\right) \\
& -\underline{G}_{i}^{\text {ape }}(T, p)-R T \ln x_{i}^{\prime \prime}-R T \ln \phi_{i}^{\prime \prime}\left(T, p, \underline{x}^{\prime \prime}\right) \\
& =R T \ln x_{i}^{\prime} \phi_{i}^{\prime}-R T \ln x_{i}^{\prime \prime} \phi_{i}^{\prime \prime}
\end{aligned}
$$

$$
\phi_{i}=\hat{f}_{i} / p x_{i} \quad \longrightarrow=R T \ln \left(\hat{f}_{i}^{\prime} / P\right)-R T \ln \left(\hat{f}_{i}^{\prime \prime} / P\right)=R T \ln \hat{f}_{i}^{I}-R T \ln \hat{f}_{i}^{\prime \prime}
$$

at equilibrium $\quad \Delta \bar{G}_{i}=\bar{G}_{i}\left(T, P, \underline{x}^{\prime \prime}\right)-\bar{G}_{i}\left(T, P, \underline{x}^{\prime}\right)=0 \longmapsto \hat{f}_{i}{ }^{I}=\hat{f}_{i}{ }^{\prime \prime}$

Fugacity and fugacity coefficient for a species in a mixture from an equation of state

- Recall

$$
\hat{\phi}_{i}=\frac{\hat{f}_{i}}{x_{i} P}=\exp \left\{\frac{1}{R T} \int_{0}^{p}\left(\bar{V}_{i}-\bar{V}_{i}^{I \sigma}\right) d p\right\}
$$

- Therefore,

$$
\ln \hat{\phi}_{i}=\ln \left(\frac{\hat{f}_{i}}{x_{i} p}\right)=\frac{1}{R T} \int_{0}^{p}\left(\bar{V}_{i}-\bar{V}_{i}^{I c}\right) d p
$$

- normally volumetric equation of state are pressure explicit. The integral is easier if the integration is based on volume.

$$
\left(\frac{\partial V}{\partial N_{i}}\right)_{T, P, N_{j \neq i}}\left(\frac{\partial P}{\partial V}\right)_{T, N,}\left(\frac{\partial N_{i}}{\partial P}\right)_{T, V, N, i}=-1 \Longleftrightarrow\left(\frac{\partial V}{\partial N_{i}}\right)_{T, P, N_{j \neq i}}\left(\frac{\partial P}{\partial V}\right)_{T, N,}=-\left(\frac{\partial P}{\partial N_{i}}\right)_{T, V, N,}
$$

$$
\left.\left(\frac{\partial V}{\partial N_{i}}\right)_{T, P, V_{j \neq i}} d P=-V_{i} d P=-\left(\frac{\partial P}{\partial N_{i}}\right)_{T, V, N_{j}} d V=-\frac{\partial P}{\partial N_{i}}\right)_{T, V, V_{j}} d
$$

$$
\begin{aligned}
& \left.\ln \hat{\phi}_{i}=\ln \left(\frac{\hat{f_{i}}}{x_{i} P}\right)=\frac{1}{R T} \int_{0}^{p}\left(\hat{V}_{i}^{-}-V_{i}^{I G}\right) d P=\frac{1}{R} \int_{0}^{p} \bar{V}_{i} d P\right)-\frac{1}{R T} \int_{0}^{p-I G} V_{i} d P \\
& \left(\frac{\partial V}{\partial N_{i}}\right)_{T, P_{, V} V_{j \neq i}} d P=-\overline{V_{i} d P}=-\left(\frac{\partial P}{\partial N_{i}}\right)_{T, V, V_{j}} d V=-N\left(\frac{\partial P}{\partial N_{i}}\right)_{T, V, V_{j}} d V_{-} \\
& \frac{1}{R T} \int_{0}^{p} \bar{V}_{i} d P=\frac{-1}{R T} \int_{\underline{V}=\infty}^{V=z R T / p} N\left(\frac{\partial p}{\partial N_{i}}\right)_{T, V, N} d V_{j \neq i} \\
& d P=\frac{1}{\underline{V}} d(P \underline{V})-\frac{P}{\underline{V}} d \underline{V}=\frac{1}{\underline{V}} d(Z R T)-\frac{P}{\underline{V}} d \underline{V}=\frac{R T}{\underline{V}} d Z-\frac{P}{\underline{V}} d \underline{V}=\frac{P}{Z} d Z-\frac{P}{\underline{V}} d \underline{V} \\
& \frac{1}{R T} \int_{0}^{p} V_{i}^{-I G} d P=-\frac{1}{R T}\left\{\int_{1}^{z} \frac{-I G}{V_{i}} p d Z-\int_{V=\infty}^{V=Z R T} / p \frac{-I G}{V_{i}} \frac{V_{-}}{Z} p d \quad V_{-}\right\} \\
& \ln \hat{\phi}_{i}=\frac{-1}{R T} \int_{V=\infty}^{V=R R T / D} N\left(\frac{\partial p}{\partial N_{i}}\right)_{T, V, N} d V_{j \neq i}-\frac{p V_{i}^{- \text {pure }}}{R T} \int_{1}^{Z} \frac{1}{Z} d Z+\frac{1}{R T} \int_{V=\infty}^{V=Z R T / p} \frac{p V_{i}^{-p u r e}}{V} d V_{-}
\end{aligned}
$$

$$
\bar{V}_{i}{ }_{i}=\bar{V}_{i}^{\text {pure }}=\frac{R T}{P}
$$

fugacity coefficient for pure substance :

$$
\ln \phi=\frac{1}{R T} \int_{\underline{V}=\infty}^{\underline{V}=Z R T} / p\left(\frac{R T}{\underline{V}}-P\right) d \underline{V}-\ln Z+(Z-1)
$$

Excess Gibbs Free Energy and Gibbs-Duhem Equation

$$
\begin{aligned}
& \text { If } \underline{G}^{e x}(T, P, \underline{x})=a x_{1} x_{2} \operatorname{then} \bar{G}_{1}^{-e x}=a x_{2}^{2}=R T \ln \gamma_{1}, \bar{G}_{2}^{e x}=a x_{1}^{2}=R T \ln \gamma_{2} \\
& \left.\sum_{i=1}^{c} x_{i} d \bar{G}_{i}^{\alpha}\right|_{T, P}=x_{1} d \bar{G}_{1}^{\alpha x}+x_{2} d \bar{G}_{2}^{e x}=x_{1} d\left(a x_{2}^{2}\right)+x_{2} d\left(a x_{1}^{2}\right) \\
& \\
& =2 a x_{1} x_{2}\left(d x_{2}+d x_{1}\right)=2 a x_{1} x_{2} d\left(x_{1}+x_{2}\right)=0 \\
& \begin{aligned}
x_{1}\left(\frac{\partial \ln \gamma_{1}}{\partial x_{1}}\right)_{r, p}+x_{2}\left(\frac{\partial \ln \gamma_{2}}{\partial x_{1}}\right)_{r, p} & =x_{1} \frac{a}{R T}\left[\frac{\partial\left(1-x_{1}\right)^{2}}{\partial x_{1}}\right]_{r, p}+x_{2} \frac{a\lceil }{R T}\left\lfloor\frac{\left.\partial\left(1-x_{2}\right)^{2}\right\rceil}{\partial x_{1}}\right]_{T, P} \\
& =-\frac{2 a x_{1}}{R T}\left(1-x_{1}\right)+x_{2} \frac{a}{R T}\left\lfloor\frac{\left.\partial x_{1}^{2}\right\rceil}{\partial x_{1}}\right\rfloor=-\frac{2 a x_{1} x_{2}}{R T}+\frac{2 a x_{1} x_{2}}{R T}=0
\end{aligned}
\end{aligned}
$$

All activity coefficients derived from an excess Gibbs free energy expression that satisfies boundary conditions of being zero at $x_{1}=0$ and 1 will satisfy the Gibbs-Duhem equation.
at $x_{1}=0$ and $x_{1}=1 \quad \underline{G}^{e x}=0 \quad$ then the activity coefficients satisfy $\quad 0=\left.\sum_{i=1}^{c} x_{i} d \ln \gamma_{i}\right|_{T, P}$

Activity Coefficient Model

$$
\ln \gamma_{i}=\bar{G}_{i}^{e x} / R T \quad \underline{G}^{e x} / R T=\sum_{i} x_{i} \ln \gamma_{i}
$$

- Random mixing assumption (Wohl's expansion):

$$
\frac{\underline{G}^{e x}}{R T \sum q_{i} x_{i}}=\sum_{i} \sum_{j} a_{i j} z_{i} z_{j}+\sum_{i} \sum_{j} \sum_{k} a_{i k} z_{i} z_{j} z_{k}+\ldots \ldots
$$

- Redlich-Kister model
- Margules model
- van Laar model

Margules' Equations

-While the simplest Redlich/Kister-type correlation is the Symmetric Equation, but a more accurate equation is the Margules correlation:
-let,

$$
\frac{G^{E}}{R T x_{1} x_{2}}=A_{21} x_{1}+A_{12} x_{2}
$$

$$
\ln \gamma_{1}^{\infty}=\left.\lim _{x_{1} \rightarrow 0} \frac{G^{E}}{R T x_{1} x_{2}} \quad \frac{G^{E}}{R T x_{1} x_{2}}\right|_{x_{1} \rightarrow 0}=A_{12}
$$

-so that

$$
\begin{aligned}
& A_{12}=\ln \gamma_{1}^{\infty} \\
& A_{21}=\ln \gamma_{2}^{\infty}
\end{aligned}
$$

Margules' Equations

-If you have Margules parameters, the activity coefficients can be derived from the excess Gibbs energy expression:

$$
\frac{G^{E}}{R T x_{1} x_{2}}=A_{21} x_{1}+A_{12} x_{2}
$$

-to yield:

$$
\begin{aligned}
& \ln \gamma_{1}=x_{2}^{2}\left[A_{12}+2\left(A_{21}-A_{12}\right) x_{1}\right] \\
& \ln \gamma_{2}=x_{1}^{2}\left[A_{21}+2\left(A_{12}-A_{21}\right) x_{2}\right]
\end{aligned}
$$

-These empirical equations are widely used to describe binary solutions. A knowledge of A_{12} and A_{21} at the given T is all we require to calculate activity coefficients for a given solution composition.

Van Laar Correlation

-Another two-parameter excess Gibbs energy model was developed from an expansion of ($R \mathrm{Tx}_{1} \mathrm{x}_{2}$)/G ${ }^{\mathrm{E}}$ instead of $\mathrm{G}^{\mathrm{E}} / \mathrm{RTx}_{1} \mathrm{x}_{2}$. The end results are:

$$
\frac{G^{E}}{R T x_{1} x_{2}}=\frac{A_{12}^{\prime} A_{21}^{\prime}}{A_{12}^{\prime} x_{1}+A_{21}^{\prime} x_{2}}
$$

-for the excess Gibbs energy and:

$$
\ln \gamma_{2}=A_{21}^{\prime}\left(1+\frac{A_{21}^{\prime} x_{2}}{A_{12} x_{1}}\right)^{-2} \quad \ln \gamma_{1}=A_{12}^{\prime}\left(1+\frac{A_{12}^{\prime} x_{1}}{A_{21}^{\prime} x_{2}}\right)^{-2}
$$

-for the activity coefficients.

- as $\mathrm{x}_{1} \rightarrow 0, \ln \gamma_{1}^{\infty} \rightarrow \mathrm{A}_{12}^{\prime} \quad$ as $\mathrm{x}_{2} \rightarrow 0, \ln \gamma_{2}{ }^{\infty} \rightarrow \mathrm{A}^{\prime}{ }_{21}$

Local Composition Models

-Unfortunately, the previous approach cannot be extended to systems of 3 or more components. For these cases, local composition models are used to represent multi-component systems.

- Wilson's Theory
- Non-Random-Two-Liquid Theory (NRTL)
- Universal Quasichemical Theory (Uniquac)
-While more complex, these models have two advantages:
- the model parameters are temperature dependent
- the activity coefficients of species in multi-component liquids can be calculated using information from binary data.

Local Composition Models

Introductory Chemical Engineering Thermodynamics J.Richard Elliott, Carl T. Lira

Composition around a " 1 " molecule	Composition around a " 2 " molecule
x_{21} - mole fraction of " 2 ' s " around " 1 "	x_{12}-mole fraction of " 1 's" around " 2 "
$x_{11}-$ mole fraction of " 1 's" around " 1 "	x_{22}-mole fraction of " 2 's" around " 2 "
local mole balance, $x_{11}+x_{21}=1$	local mole balance, $x_{22}+x_{12}=1$

Assume that the local compositions are given by some weighting factor, Ω_{ij}, relative to the overall compositions.

$$
\frac{x_{21}}{x_{11}}=\frac{x_{2}}{x_{1}} \Omega_{21} \quad \frac{x_{12}}{x_{22}}=\frac{x_{1}}{x_{2}} \Omega_{12}
$$

Therefore, if $\Omega_{12}=\Omega_{21}=1$, the solution is random.

Local Composition Models

The local mole balance:

$$
x_{11}+x_{21}=1
$$

Writing the local mole fractions x_{21} and x_{11} in terms of the overall mole fractions, x_{1} and x_{2},

$$
x_{21}=x_{11} \frac{x_{2}}{x_{1}} \Omega_{21}
$$

Substitute back to (1),

$$
x_{11}\left(1+\frac{x_{2}}{x_{1}} \Omega_{21}\right)=1
$$

Rearrange,

$$
x_{11}=\frac{x_{1}}{x_{1}+x_{2} \Omega_{21}}
$$

Substitute back to (2),

$$
x_{21}=\frac{x_{2} \Omega_{21}}{x_{1}+x_{2} \Omega_{21}}
$$

Local Composition Models

Similar for type "2"

$$
\begin{aligned}
& x_{22}=\frac{x_{2}}{x_{1} \Omega_{12}+x_{2}} \\
& x_{12}=\frac{x_{1} \Omega_{12}}{x_{1} \Omega_{12}+x_{2}}
\end{aligned}
$$

Apply this local composition theory to properties using two-fluid theory,

$$
\left(M-M^{i g}\right)=x_{1}\left(M-M^{i g}\right)^{(1)}+x_{2}\left(M-M^{i g}\right)^{(2)}
$$

The local composition environment of the type 1 molecules determines the first term, local composition environment of the type 2 molecules determines the second term.

Local Composition Models

Introduce the local interaction energy $\left(\varepsilon_{i j}\right)$, allowing that the $\varepsilon_{12}=\varepsilon_{21}$
Neglecting the excess volume of mixing relative to the other contributions, which should be quite acceptable for liquids.

$$
\begin{aligned}
& \left(U-U^{i g}\right)^{(1)}=\frac{N_{A}}{2} N c_{1}\left(x_{11} \varepsilon_{11}+x_{21} \varepsilon_{21}\right) \\
& \left(U-U^{i g}\right)^{(2)}=\frac{N_{A}}{2} N c_{2}\left(x_{12} \varepsilon_{12}+x_{22} \varepsilon_{22}\right)
\end{aligned}
$$

then

$$
U-U^{i g}=\frac{N_{A}}{2}\left[x_{1} N c_{1}\left(x_{11} \varepsilon_{11}+x_{21} \varepsilon_{21}\right)+x_{2} N c_{2}\left(x_{12} \varepsilon_{12}+x_{22} \varepsilon_{22}\right)\right]
$$

Should using H as we discussed in regular solution. Since excess volume of mixing is neglected, $\mathrm{U}=\mathrm{H}$.

Local Composition Models

Recall,

$$
\frac{x_{21}}{x_{11}}=\frac{x_{2}}{x_{1}} \Omega_{21} \quad \frac{x_{12}}{x_{22}}=\frac{x_{1}}{x_{2}} \Omega_{12}
$$

Notice that when x_{1} approaches unity, x_{2} goes to zero, and x_{21} goes to zero, and x_{11} goes to one,

$$
\begin{aligned}
& \left(U-U^{i g}\right)_{\text {pure } 1}=\left(N_{A} / 2\right) N c_{1} \varepsilon_{11} \\
& \left(U-U^{i g}\right)_{\text {pure } 2}=\left(N_{A} / 2\right) N c_{2} \varepsilon_{22}
\end{aligned}
$$

where $N c_{j}$ is the coordination number, the total number of atoms in the neighborhood of the th species). We have,
$\left(U-U^{i g}\right)^{i s}=x_{1}\left(U-U^{i g}\right)_{p u r e 1}+x_{2}\left(U-U^{i g}\right)_{p u r e 2}=\frac{N_{A}}{2}\left[x_{1} N c_{1} \varepsilon_{11}+x_{2} N c_{2} \varepsilon_{22}\right]$

Local Composition Models

Recall,

$$
U-U^{i g}=\frac{N_{A}}{2}\left[x_{1} N c_{1}\left(x_{11} \varepsilon_{11}+x_{21} \varepsilon_{21}\right)+x_{2} N c_{2}\left(x_{12} \varepsilon_{12}+x_{22} \varepsilon_{22}\right)\right]
$$

Subtracting we have,
$U^{E}=U-U^{i s}=\frac{N_{A}}{2}\left[x_{1} N c_{1}\left(\left(x_{11} \varepsilon_{11}+x_{21} \varepsilon_{21}\right)-\varepsilon_{11}\right)+x_{2} N c_{2}\left(\left(x_{12} \varepsilon_{12}+x_{22} \varepsilon_{22}\right)-\varepsilon_{22}\right)\right]$
using $\quad\left(x_{11}-1\right) \varepsilon_{11}=-x_{21} \varepsilon_{11} \quad\left(x_{22}-1\right) \varepsilon_{22}=-x_{12} \varepsilon_{22}$
Arriving at $\quad U^{E}=\frac{N_{A}}{2}\left[x_{1} x_{21} N c_{1}\left(\varepsilon_{21}-\varepsilon_{11}\right)+x_{2} x_{12} N c_{2}\left(\varepsilon_{12}-\varepsilon_{22}\right)\right]$
Replace x_{21}, and x_{12},

$$
U^{E}=\frac{N_{A}}{2}\left[\frac{x_{1} x_{2} \Omega_{21} N c_{1}\left(\varepsilon_{21}-\varepsilon_{11}\right)}{x_{1}+x_{2} \Omega_{21}}+\frac{x_{2} x_{1} \Omega_{12} N c_{2}\left(\varepsilon_{12}-\varepsilon_{22}\right)}{x_{1} \Omega_{12}+x_{2}}\right]
$$

Wilson's Equations for Binary Solution Activity

Recall,

$$
A=U-T S \Rightarrow A / R T=U / R T-S / R
$$

then,
$T\left(\frac{\partial(A / R T)}{\partial T}\right)_{V}=\frac{T}{R T}\left(\frac{\partial U}{\partial T}\right)_{V}-\frac{T U}{R T^{2}}-\frac{T}{R}\left(\frac{\partial S}{\partial T}\right)_{V}=\frac{C_{V}}{R}-\frac{U}{R T}-\frac{T}{R} \frac{C_{V}}{T}=-\frac{U}{R T}$
We have,

$$
\int_{\infty}^{T} d\left(\frac{A^{E}}{R T}\right)=\frac{A^{E}}{R T}-\left.\frac{A^{E}}{R T}\right|_{\infty}=-\int_{\infty}^{T} \frac{U^{E}}{R T^{2}} d T
$$

where $A_{E} \Delta(R T)$ is the infinite temperature limit at the given liquid density independent of temperature but possibly dependent on composition or density.

Wilson's Equations for Binary Solution Activity

Wilson made a bold assumption regarding the temperature dependence of $\Omega_{i j}$.

$$
\Omega_{i j}=\Lambda_{j i}=\frac{V_{i}}{V_{j}} \exp \left(\frac{-N_{A} N c_{j}\left(\varepsilon_{i j}-\varepsilon_{j j}\right.}{2 R T}\right)=\frac{V_{i}}{V_{j}} \exp \left(\frac{-A_{j i}}{R T}\right)
$$

Substitute back and integrate,
$\frac{A^{E}}{R T}=-x_{1} \ln \left(\Phi_{1}+\Phi_{2} \exp \left(-A_{12} / R T\right)\right)-x_{2} \ln \left(\Phi_{1} \exp \left(-A_{21} / R T\right)+\Phi_{2}\right)+\left.\frac{A^{E}}{R T}\right|_{\infty}$
Separate $G^{E} / R T$ into an energetic part known as the residual contribution, that vanishes at infinite temperature or when $\varepsilon_{12}-\varepsilon_{22}=0$ and $\varepsilon_{21}-\varepsilon_{11}=0$, and a size/shape part known as the combinatorial contribution, that represents the infinite temperature limit at the liquid density.

Wilson's Equations for Binary Solution Activity

Therefore,

$$
\left(G^{E} / R T\right)^{R E S}=-x_{1} \ln \left(\Phi_{1}+\Phi_{2} \exp \left(-A_{12} / R T\right)\right)-x_{2} \ln \left(\Phi_{1} \exp \left(-A_{21} / R T\right)+\Phi_{2}\right)
$$

For the combinatorial contribution, Wilson used Flory's equation,

$$
G^{E} /\left.(R T)\right|_{\infty}=\left(G^{E} / R T\right)^{C O M B}=x_{1} \ln \left(\Phi_{1} / x_{1}\right)+x_{2} \ln \left(\Phi_{2} / x_{2}\right)
$$

Combine, the above, Wilson's equation becomes,

$$
\frac{G^{E}}{R T}=-x_{1} \ln \left(\Phi_{1}+\Phi_{2} \exp \left(\frac{-A_{12}}{R T}\right)\right)-x_{2} \ln \left(\Phi_{1} \exp \left(\frac{-A_{21}}{R T}\right)+\Phi_{2}\right)+x_{1} \ln \frac{\Phi_{1}}{x_{1}}+x_{2} \ln \frac{\Phi_{2}}{x_{2}}
$$

$$
\frac{G^{E}}{R T}=-x_{1} \ln \left(x_{1}+x_{2} \Lambda_{12}\right)-x_{2} \ln \left(x_{1} \Lambda_{21}+x_{2}\right)
$$

Wilson's Equations for Binary Solution Activity

-A versatile and reasonably accurate model of excess Gibbs Energy was developed by Wilson in 1964. For a binary system, \mathbf{G}^{E} is provided by:

$$
\begin{aligned}
& \frac{G^{E}}{R T}=x_{1} \ln \left(x_{1}+x_{2} \Lambda_{12}\right)-x_{2} \ln \left(x_{2}+x_{1} \Lambda_{21}\right) \\
& \Lambda_{12}=\frac{V_{2}}{V_{1}} \exp \left[\frac{-a_{12}}{R T}\right\rfloor \quad \Lambda_{21}=\frac{V_{1}}{V_{2}} \exp \left\lceil\frac{-a_{21}}{R T}\right\rfloor
\end{aligned}
$$

V_{i} is the molar volume at T of the pure component i.
a_{ij} is determined from experimental data.
The notation varies greatly between publications. This includes,
$-a_{12}=\left(\lambda_{12}-\lambda_{11}\right), a_{21}=\left(\lambda_{12}-\lambda_{22}\right)$ that you will encounter in Holmes, M.J. and M.V. Winkle (1970) Ind. Eng. Chem. 62, 21-21.

Wilson's Equations for Binary Solution Activity

-Recall

$$
R T \ln \gamma_{i}=\bar{G}_{i}^{E}=\left.\frac{\partial n G^{E}}{\partial n_{i}}\right|_{T, P, n_{j}}
$$

-When applied to Wilson's :

$$
\begin{aligned}
& \ln \gamma_{1}=-\ln \left(x_{1}+x_{2} \Lambda_{12}\right)+x_{2}\left(\frac{\Lambda_{12}}{x_{1}+x_{2} \Lambda_{12}}-\frac{\Lambda_{21}}{x_{2}+x_{1} \Lambda_{21}}\right) \\
& \ln \gamma_{2}=-\ln \left(x_{2}+x_{1} \Lambda_{21}\right)-x_{1}\left(\frac{\Lambda_{12}}{x_{1}+x_{2} \Lambda_{12}}-\frac{\Lambda_{21}}{x_{2}+x_{1} \Lambda_{21}}\right)
\end{aligned}
$$

Wilson's Equations for MultiComponent Mixtures

-The strength of Wilson's approach resides in its ability to describe multicomponent ($3+$) mixtures using binary data.

- Experimental data of the mixture of interest (ie. acetone, ethanol, benzene) is not required
- We only need data (or parameters) for acetone-ethanol, acetone-benzene and ethanol-benzene mixtures
-The excess Gibbs energy for multicomponent mixtures is written:

$$
\frac{G^{E}}{R T}=-\sum_{i} x_{i} \ln \left(\sum_{j} x_{j} \Lambda_{i j}\right)
$$

-and the activity coefficients become:

$$
\ln \gamma_{i}=1-\ln \sum_{i} x_{j} \Lambda_{i j}-\sum_{k} \frac{x_{k} \Lambda_{k i}}{\sum_{j} x_{j} \Lambda_{k j}}
$$

-where $\Lambda_{\mathrm{ij}}=\mathbf{1}$ for $\mathrm{i}=\mathrm{j}$. Summations are over all species.

Wilson's Equations for 3-Component Mixtures

-For three component systems, activity coefficients can be calculated from the following relationship:

$$
\begin{aligned}
\ln \gamma_{i}=1-\ln \left(x_{1} \Lambda_{i 1}+x_{2} \Lambda_{i 2}+x_{3} \Lambda_{i 3}\right) & -\frac{x_{1} \Lambda_{1 i}}{x_{1}+x_{2} \Lambda_{12}+x_{3} \Lambda_{13}} \\
& -\frac{x_{2} \Lambda_{2 i}}{x_{1} \Lambda_{21}+x_{2}+x_{3} \Lambda_{23}} \\
& -\frac{x_{3} \Lambda_{3 i}}{x_{1} \Lambda_{31}+x_{2} \Lambda_{32}+x_{3}}
\end{aligned}
$$

- Model coefficients are defined as ($\Lambda_{\mathrm{ij}}=1$ for $\mathrm{i}=\mathrm{j}$):

$$
\Lambda_{i j}=\frac{V_{j}}{V_{i}} \exp \left[\frac{-a_{i j}}{R T}\right]
$$

Non-Random-Two-Liquid Theory (NRTL)

- NRTL model (Non-Random Two-Liquid; Renon and Prausnitz, 1968)
- For binary systems:

$$
\begin{aligned}
& \ln \gamma_{1}=x_{2}^{2}\left\lfloor\tau_{21}\left(\frac{G_{21}}{x_{1}+x_{2} G_{21}}\right)^{2}+\frac{\tau_{12} G_{12}}{\left(x_{2}+x_{1} G_{12}\right)^{2}}\right\rfloor \\
& \left.\ln \gamma_{2}=x_{1}^{2} \backslash \tau_{12}\left(\frac{G_{12}}{x_{2}+x_{1} G_{12}}\right)^{2}+\frac{\tau_{21} G_{21}}{\left(x_{1}+x_{2} G_{21}\right)^{2}}\right\rfloor \\
& \text { where } \quad G_{12}=\exp \left[-\alpha_{12}\left(\frac{g_{12}-g_{22}}{R T}\right)\right] ; \quad G_{21}=\exp \left[-\alpha_{12}\left(\frac{g_{21}-g_{11}}{R T}\right)\right]
\end{aligned}
$$

- α_{12}, the so-called non-randomness parameter
- Good for both miscible and partially miscible systems

Non-Random-Two-Liquid Theory (NRTL)

- For a liquid, in which the local distribution is random around the center molecule, the parameter $\alpha_{12}=0$. In that case the equations reduce to the one-parameter Margules activity model

$$
\begin{aligned}
& \ln \gamma_{1}=x_{2}^{2}\left[\tau_{21}+\tau_{12}\right]=A x_{2}^{2} \\
& \ln \gamma_{2}=x_{1}^{2}\left[\tau_{12}+\tau_{21}\right]=A x_{1}^{2}
\end{aligned}
$$

- The NRTL parameters are fitted to activity coefficients that have been derived from experimentally determined phase equilibrium data
- Noteworthy is that for the same liquid mixture there might exist several NRTL parameter sets. It depends from the kind of phase equilibrium (i.e. solid-liquid, liquid-liquid, vapor-liquid).

Universal Quasichemical Theory

- UNIQUAC (Abrams and Prausnitz, 1975)
- In the UNIQUAC model the activity coefficients of the $i^{\text {th }}$ component of a two component mixture are described by a combinatorial and a residual contribution

$$
\ln \gamma_{i}=\ln \gamma_{i}^{C}+\ln \gamma_{i}^{R}
$$

- The first is an entropic term quantifying the deviation from ideal solubility as a result of differences in molecule shape. The latter is an enthalpic correction caused by the change in interacting forces between different molecules upon mixing.

UNIQUAC

- Combinatorial contribution

$$
\ln \gamma_{i}^{c}=1-V_{i}+\ln V_{i}+\frac{z}{2} q_{i}\left(1-\frac{V_{i}}{F_{i}}+\ln \frac{V_{i}}{F_{i}}\right)
$$

- V_{i}, is the Volume fraction per mixture mole fraction for the i^{th} component
- F_{i}, is the surface area fraction per mixture molar fraction for the $\mathrm{i}^{\text {th }}$ component
- Z=10
- The excess entropy γ^{c} is calculated exclusively from the pure chemical parameters, using the relative Van der Waals volumes r_{i} and surface areas q_{i} of the pure chemicals.

UNIQUAC

- Residual contribution

$$
\begin{aligned}
& \left.\ln \gamma_{i}^{R}=q_{i} \left\lvert\, 1-\ln \frac{\sum_{j} q_{j} x_{j} \tau_{i j}}{\sum_{j} q_{j} x_{j}}-\sum_{j} \frac{q_{j} x_{j} \tau_{i j}}{\sum_{k} q_{k} x_{k} \tau_{k j}}\right.\right) \\
& \tau_{i j}=e^{-\Delta u_{j} / R T}
\end{aligned}
$$

$\Delta u_{\mathrm{ij}}[\mathrm{J} / \mathrm{mol}]$ is the binary interaction energy parameter. Theory defines $\Delta u_{i j}=u_{i j}-u_{i j}$, and $\Delta u_{\mathrm{ij}}=u_{\mathrm{ij}}-\mathrm{u}_{\mathrm{ij}}$, where u_{ij} is the interaction energy between molecules i and j.

- Data is derived from experimental activity coefficients, or from phase diagrams

The UNIFAC model

A. Fredenslund, R.L. Jones, and J.M. Prausnitz, AIChE Journal (Vol.21, No. 6 1975)
$\ln \gamma_{i}=\ln \gamma_{i}^{C}($ combinator $\quad i a l)+\ln \gamma_{i}^{R}($ residual $)$
$\ln \gamma_{i}($ combinator \quad ial $)=\ln \frac{\phi_{i}}{x_{i}}+\frac{z}{2} q_{i} \ln \frac{\theta_{i}}{\phi_{i}}+l_{i}-\frac{\phi_{i}}{x_{i}} \sum_{j} x_{j} l_{j}$
with $l_{i}=\left(r_{i}-q_{i}\right) z / 2-\left(r_{i}-1\right) \quad \ln \gamma_{i}($ residual $)=\sum_{k} v_{k}^{(i)}\left[\ln \Gamma_{k}-\ln \Gamma_{k}^{(i)}\right]$ URMe as
$v_{k}^{(i)}$ is the number of k groups present in species i
$\Gamma^{i}{ }^{i}$ is the residual contribution to the activity coefficient of group k in a pure $\Gamma_{k} \quad$ fluid of species i.
$\left.\left.\ln \Gamma_{k}=Q_{k} \backslash 1-\ln \left(\sum_{m} \Theta_{\mu} \Psi_{m_{k}}\right)-\sum_{m_{m}}^{\left.\sum_{n_{m}} \Theta_{m} \Psi_{m} \Psi_{m}\right\rfloor}\right\rceil\right] \quad \Theta_{m}=\left\{\begin{array}{l}\text { surface area } \\ \text { fraction of } \\ \text { group } \mathbf{m}\end{array}\right\}=\frac{X_{m} Q_{m}}{\sum_{n} X_{n} Q_{n}}$
$\Psi^{n n}=\exp \left[\frac{-\left(u_{m m}-u_{m m}\right)}{k T}\right]=\exp \left[\frac{\left.-a_{m m}\right\rceil}{T}\right\rfloor$
$X_{m}=$ mole fraction of group m in mixture
$Z=10$

$$
l_{2}=\left(\frac{z}{2}\right)\left(r_{2}-q_{2}\right)-\left(r_{2}-1\right)
$$

For component $2, \gamma_{2}$ can be found by interchanging subscripts 1 and 2.

Numerical results for $\ln \gamma$ are insensitive to the choice of coordination number z provided a reasonable value ($6 \leq z \leq 12$) is chosen. However, adjustable parameters τ_{21} and τ_{12} depend on that choice. In this work we have consistently used $z=10$.

$$
\Psi_{m}=\exp \left[\frac{\Gamma-\left(u_{m}-u_{m}\right)}{k T}\right]=\exp \left[\frac{\left.\Gamma-a_{m m}\right\rceil}{T}\right\rfloor
$$

D.S. Abrams and J.M. Prausnitz, AIChE J. Vol. 21:116-128, 1975

Example: obtain activity coefficients for the acetone/n-pentane system at 307 K and $x_{\text {acetone }}=\mathbf{0 . 0 4 7}$.

Molecules (i)	Group identification					
	name	Main No.	Sec. No	$v_{j}^{(\prime)}$	R_{j}	Q_{j}
	CH_{3}	1	1	1	0.9011	0.848
	$\mathrm{CH}_{3} \mathrm{CO}$	9	19	1	1.6724	1.488
n-pentane	CH_{3}	1	1	2	0.9011	0.848
	CH_{2}	1	2	3	0.6744	0.540

Main group	Subgroup	k	R_{k}	Q_{k}	Examples of molecules and their constituent groups	
$1{ }^{\text {" }} \mathrm{CH}_{2}$ "	CH_{3}	1	0.901 D	8848	n-Butane: Isobutane: 2,2-Dimethyl propane:	$\begin{aligned} & 2 \mathrm{CH}_{3}, 2 \mathrm{CH}_{2} \\ & 3 \mathrm{CH}_{3}, 1 \mathrm{CH} \end{aligned}$
	CH_{2}	2	(0.6744			
	CH	3	0.4469	0.228		$3 \mathrm{CH}_{3}, 1 \mathrm{CH}$
	C	4	0.2195	0.000		$4 \mathrm{CH}_{3}, 1 \mathrm{C}$
$\begin{aligned} & 3^{\prime \prime} \mathrm{ACH} \\ & \quad(\mathrm{AC}=\mathrm{ar} \end{aligned}$	ACH matic carbon)	10	0.5313	0.400	Benzene:	6ACH
$4{ }^{\text {" } \mathrm{CCCH}_{2} \text { " }}$	ACCH_{3}	12	1.2663	0.968	Toluene:	$5 \mathrm{ACH}_{,}, 1 \mathrm{ACCH}_{3}$ $1 \mathrm{CH}_{3}, 5 \mathrm{ACH}, 1 \mathrm{ACCH}_{2}$
	ACCH_{2}	13	1.0396	0.660	Ethylbenzene:	
5 OH	OH	15	1.0000	1.200	Ethanol:	$1 \mathrm{CH}_{3}, 1 \mathrm{CH}_{2}, 1 \mathrm{OH}$
$7{ }^{\prime} \mathrm{H}_{2} \mathrm{O}$ "	$\mathrm{H}_{2} \mathrm{O}$	17	0.9200	1.400	Water:	$1 \mathrm{H}_{2} \mathrm{O}$
$9{ }^{\prime} \mathrm{CH}_{2} \mathrm{CO}$ "	$\mathrm{CH}_{3} \mathrm{CO}$ $\mathrm{CH}_{2} \mathrm{CO}$	19	$\frac{1.6724}{14477}$	$\begin{aligned} & 1.488 \\ & 1.180 \end{aligned}$	Acetone: 3-Pentanone:	$\begin{aligned} & 1 \mathrm{CH}_{3} \mathrm{CO}, 1 \mathrm{CH}_{3} \\ & 2 \mathrm{CH}_{3}, 1 \mathrm{CH}_{2} \mathrm{CO}, 1 \mathrm{CH}_{2} \end{aligned}$
13 " $\mathrm{CH}_{2} \mathrm{O}$ "	$\mathrm{CH}_{3} \mathrm{O}$	25	1.1450	1.088	Dimethyl ether:	$\begin{aligned} & 1 \mathrm{CH}_{3}, 1 \mathrm{CH}_{3} \mathrm{O} \\ & 2 \mathrm{CH}_{3}, 1 \mathrm{CH}_{2}, 1 \mathrm{CH}_{2} \mathrm{O} \\ & 4 \mathrm{CH}_{3}, 1 \mathrm{CH}, 1 \mathrm{CH}-\mathrm{O} \end{aligned}$
	$\mathrm{CH}_{2} \mathrm{O}$	26	0.9183	0.780	Diethyl ether:	
	$\mathrm{CH}-\mathrm{O}$	27	0.6908	0.468	Diisopropylether:	
15 "CNH"	$\mathrm{CH}_{3} \mathrm{NH}$	32	1.4337	1.244	Dimethylamine:	$\begin{aligned} & 1 \mathrm{CH}_{3}, 1 \mathrm{CH}_{3} \mathrm{NH} \\ & 2 \mathrm{CH}_{3}, 1 \mathrm{CH}_{2}, 1 \mathrm{CH}_{2} \mathrm{NH} \\ & 4 \mathrm{CH}_{3}, 1 \mathrm{CH}, 1 \mathrm{CHNH} \end{aligned}$
	$\mathrm{CH}_{2} \mathrm{NH}$	33	1.2070	0.936	Diethylamine:	
	CHNH	34	0.9795	0.624	Diisopropylamine:	
19 "CCN"	$\mathrm{CH}_{3} \mathrm{CN}$	41	1.8701	1.724	Acetonitrile:	$\begin{aligned} & 1 \mathrm{CH}_{3} \mathrm{CN} \\ & 1 \mathrm{CH}_{3}, 1 \mathrm{CH}_{2} \mathrm{CN} \end{aligned}$
	$\mathrm{CH}_{2} \mathrm{CN}$	42	1.6434	1.416	Propionitrile:	

$\dagger H V$ Hancen P Racmuccen Δa Fredenclund M Schiller and I Gmehling TFC Decearcl, wol 20
$\ln \gamma_{i}=\ln \gamma_{i}($ combinator ial $)+\ln \gamma_{i}($ residual $)$
$\ln \gamma_{i}($ combinator \quad al $)=\ln \frac{\phi_{i}}{x_{i}}+\frac{z}{2} \ln \frac{\theta_{i}}{\phi_{i}}+l_{i}-\frac{\phi_{i}}{x_{i}} \sum_{j} x_{j} l_{j} \quad l_{i}=\left(r_{i}-q_{i}\right) z / 2-\left(r_{i}-1\right)$

calculation of combinatorial contribution

mole fraction of acetone: $x_{A}=0.047$
segment volume for acetone:

$$
r_{A}=1 \times 0.9011+1 \times 1.6724=2.5735
$$

segment volume for pentane:

$$
r_{p}=2 \times 0.9011+3 \times 0.6744=3.8254
$$

total volume at $x_{A}=0.047: \quad r_{\text {tot }}=0.047 \times 2.5735+0.953 \times 3.8254=3.7666$
the segment fraction for acetone:

$$
\phi_{A}=\frac{0.047 \times 2.5735}{3.7666}=0.0321
$$

the segment fraction for pentane:

$$
\phi_{P}={\underset{\wedge}{ }-\phi_{\Lambda}=0.9679}^{1}
$$

Residual error
area for acetone:

$$
q_{A}=1 \times 0.848+1 \times 1.488=2.336
$$

area for pentane: $\quad q_{p}=2 \times 0.848+3 \times 0.540=3.316$
total area at $x_{A}=0.047: \quad q_{\text {tot }}=0.047 \times 2.336+0.953 \times 3.316=3.2699$
area fraction for acetone: $\quad \theta_{\Lambda}=\frac{0.047 \times 2.336}{3.2699}=0.0336$
area fraction for pentane:

$$
\theta_{p}=1-\theta_{A}=0.9664
$$

$$
\begin{aligned}
& l_{A}=\frac{Z}{2}\left(r_{A}-q_{A}\right)-\left(r_{A}-1\right)=\frac{10}{2}(2.5735-2.336)-(2.5735-1)=-0.3860 \\
& l_{P}=\frac{10}{2}(3.8254-3.316)-(3.8254-1)=-0.2784
\end{aligned}
$$

Molecule (i)	r_{i}	q_{i}	ϕ_{i}	θ_{i}	l_{i}
acetone	2.5735	2.336	0.0321	0.0336	-0.3860
pentane	3.8254	3.316	0.9679	0.9664	-0.2784

combinatorial contribution

$\ln \gamma_{i}($ combinator \quad ial $)=\ln \frac{\phi_{i}}{x_{i}}+\frac{z}{2} q_{i} \ln \frac{\theta_{i}}{\phi_{i}}+l_{i}-\frac{\phi_{i}}{x_{i}} \sum_{j} x_{j} l_{j}$
for acetone

$$
\begin{aligned}
\ln \gamma_{A} & =\ln \frac{0.0321}{0.047}+\frac{10}{2} \times 2.336 \times \ln \frac{0.0336}{0.0321}-0.386 \\
& -\frac{0.0321}{0.047}[0.047 \times(-0.386)+0.953 \times(-0.2784)]=-0.0403
\end{aligned}
$$

for pentane

$$
\begin{aligned}
\ln \gamma_{P} & =\ln \frac{0.9679}{0.953}+\frac{10}{2} \times 3.316 \times \ln \frac{0.9664}{0.9679}-0.2784 \\
& -\frac{0.9679}{0.953}[0.047 \times(-0.386)+0.953 \times(-0.2784)]=-0.0007
\end{aligned}
$$

residual contribution

$\ln \gamma_{i}($ residual $)=\sum_{k} v_{k}^{(i)}\left[\ln \Gamma_{k}-\ln \Gamma_{k}^{(i)}\right]$
$v_{k}^{(i)}$ is the number of k groups present in species i
$\Gamma_{k}{ }^{(i)} \quad$ is the residual contribution to the activity coefficient of group k in a pure fluid of species i.

$$
\left.\ln \Gamma_{k}=Q_{k} \backslash 1-\ln \left(\sum_{m} \Theta_{m} \Psi_{m k}\right)-\sum_{m} \frac{\Theta_{m} \Psi_{k m}}{\sum_{n} \Theta_{n} \Psi_{m m}}\right\rfloor
$$

$$
\Theta_{m}=\left\{\begin{array}{l}
\text { surface area } \\
\text { fraction of } \\
\text { group m }
\end{array}\right\}=\frac{X_{m} Q_{m}}{\sum_{n} X_{n} Q_{n}}
$$

$X_{m}=$ mole fraction of group m in mixture

Table H. 2 UNIFAC-VLE Interaction Parameters, $a_{m k}$, in kelvins ${ }^{\dagger}$

	1	3	4	5	7	9	13	15	19
CH_{2}	0.00	61.13	76.50	986.50	$1,318.00$	476.40	251.50	255.70	597.00
ACH^{c}	-11.12	0.00	167.00	636.10	903.80	25.77	32.14	122.80	212.50
ACCH_{2}	-69.70	-146.80	0.00	803.20	$5,695.00$	-52.10	213.10	-49.29	$6,096.00$
OH	156.40	89.60	25.82	0.00	353.50	84.00	28.06	42.70	6.71
$\mathrm{H}_{2} \mathrm{O}$	300.00	362.30	377.60	-229.10	0.00	-195.40	540.50	168.00	112.60
$\mathrm{CH}_{2} \mathrm{CO}$	26.76	140.10	365.80	164.50	472.50	0.00	-103.60	-174.20	481.70
$\mathrm{CH}_{2} \mathrm{O}$	83.36	52.13	65.69	237.70	-314.70	191.10	0.00	251.50	-18.51
CNH^{2}	65.33	-22.31	223.00	-150.00	-448.20	394.60	-56.08	0.00	147.10
CCN	24.82	-22.97	-138.40	185.40	242.80	-287.50	38.81	-108.50	0.00

. K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, and J. Gmehling, IEC Research, vol. 30, pp. 2352-2355, 199
from table H. 2

$$
\Psi_{m m}=\exp \left[\frac{\left\lceil-\left(u_{m m}-u_{m}\right)\right\rceil}{k T}\right\rfloor=\exp \left[\frac{\left.-a_{m}\right\rceil}{T}\right\rfloor
$$

$$
a_{1.9}=a_{\text {cuth. cureo }}=476.4 \Rightarrow \Psi_{1.9}=\exp \left[\frac{-476.4}{307}\right]=0.2119
$$

$$
a_{9,4}=a_{\text {cuvoo. cur }}=26.760 \Rightarrow \Psi_{9,4}=\exp \left[\frac{-26.76}{307}\right]=0.9165
$$

$$
a_{1,1,}=a_{0,9}=0 \Rightarrow \Psi_{1,1,}=\Psi_{0,9}=1
$$

Calculation of $\Gamma_{\star}^{(1)}$

we are dealing a pure substance!
Q_{i} from table H .1
$X_{m}=$ mole fraction of group m in mixture
for pure acetone, there are only two different kinds of groups: CH_{3} and $\mathrm{CH}_{3} \mathrm{O}$. Let CH_{3} be labeled by 1 and $\mathrm{CH}_{3} \mathrm{O}$ be labeled by 19 .

$$
\ln \Gamma_{19}^{(A)}=1.488[1-\ln (0.363 \times 0.2119+0.637)]
$$

$$
+1.488\left[-\left(\frac{0.363 \times 0.9165}{0.363 \times 1+0.637 \times 0.9165}+\frac{0.637 \times 0.2119}{0.363 \times 0.2119+0.637}\right)\right]=0.139
$$

$$
\begin{aligned}
& X_{1}^{(A)}=\frac{v_{1}^{(A)}}{v_{1}^{(A)}+v_{19}^{(A)}}=\frac{1}{1+1}=0.5, \quad X_{19}^{(A)}=0.5 \\
& \Theta_{1}^{(A)}=\frac{0.5 \times 0.848}{0.5 \times 1.488+0.5 \times 0.848}=0.363, \quad \Theta_{19}^{(A)}=0.637 \\
& \left.\ln \Gamma_{k}^{(i)}=Q_{k}^{\lceil } \left\lvert\, 1-\ln \left(\sum_{m} \Theta_{m} \Psi_{m k}\right)-\sum_{m} \frac{\Theta_{m} \Psi^{k m}}{\sum_{n} \Theta_{n} \Psi_{n m}}\right.\right\rfloor
\end{aligned}
$$

for pure pentane, there are two kinds of subgroups, CH_{3} and CH_{2} and both subgroups belong to one main group. Let CH_{2} be labeled by 2

$$
X_{1}^{(P)}=\frac{v_{1}^{(P)}}{v_{1}^{(P)}+v_{1}^{(P)}}=\frac{2}{5}=0.4, \quad X_{2}^{(P)}=0.6
$$

Since both subgroups are belong to the same main group

$$
\ln \Gamma_{1}^{(P)}=\ln \Gamma_{2}^{(P)}=0
$$

Calculation of group residual activity at $x_{A}=0.047$

> now we are dealing a mixture!
for CH_{3} (labeled 1)
for CH_{2} (labeled 2)

$$
\begin{aligned}
& X_{1}=\frac{0.047 \times 1+0.953 \times 2}{0.047 \times 2+0.953 \times 5}=0.4019, \quad X_{2}=\frac{0.953 \times 3}{0.047 \times 2+0.953 \times 5}=0.5884, \quad X_{19}=0.0097 \\
& \Theta_{1}=\frac{0.4019 \times 0.848}{0.4019 \times 0.848+0.5884 \times 0.540+0.0097 \times 1.488}=0.5064
\end{aligned}
$$

$$
\begin{aligned}
& \Theta_{2}=\frac{0.5884 \times 0.540}{0.4019 \times 0.848+0.5884 \times 0.540+0.0097 \times 1.488}=0.4721 \\
& \Theta_{19}=\frac{0.0097 \times 1.488}{0.4019 \times 0.848+0.5884 \times 0.540+0.0097 \times 1.488}=0.0214
\end{aligned}
$$

$$
\left.\ln \Gamma_{k}=Q_{k} \left\lvert\, 1-\ln \left(\sum_{m} \Theta_{m} \Psi_{m k}\right)-\sum_{m} \frac{\Theta_{m} \Psi_{k m}}{\sum_{n} \Theta_{n} \Psi_{n m}}\right.\right]
$$

$\ln \Gamma_{1}=0.848[1-\ln (0.5064+0.4721+0.0214 \times 0.9165)]$
$-0.848\left[\frac{0.5064+0.4721}{\left[\frac{0.0214 \times 0.2119}{}\left[\begin{array}{l}(0.5064+0.4721) \times 0.2119+0.0214\end{array}\right]\right.}\right.$

$$
=1.45 \times 10^{-3}
$$

$\ln \Gamma_{2}=0.540[1-\ln (0.5064+0.4721+0.0214 \times 0.9165)]$

$$
\begin{aligned}
& -0.540\left\lceil\frac{0.5064+0.4721}{\left[\begin{array}{lll}
& .5064+0.4721+0.0214 \times 0.9165
\end{array}+\frac{0.0214 \times 0.2119}{(0.5064+0.4721) \times 0.2119+0.0214}\right]}\right. \\
& =9.26 \times 10^{-4}
\end{aligned}
$$

$\ln \Gamma_{19}=1.488[1-\ln (0.5064+0.4721+0.0214 \times 0.9165)]$

$$
-1.488\left[\frac{(0.5064+0.4721) \times 0.9165}{0.5064+0.4721+0.0214 \times 0.9165}+\frac{0.0214}{(0.5064+0.4721) \times 0.2119+0.0214}\right]
$$

$$
=2.21
$$

The residual contributions to the activity coefficients follow

Finally summing up the combinatorial and residual contributions

$$
\begin{aligned}
& \ln \gamma_{A}=-0.403+1.66=1.62 \\
& \ln \gamma_{P}=-0.0007+5.68 \times 10^{-3}=4.98 \times 10^{-3}
\end{aligned}
$$

or

$$
\gamma_{A}=5.07, \quad \gamma_{P}=1.01
$$

experimental data:

$$
\gamma_{A}=4.41, \quad \gamma_{P}=1.11
$$

$$
\begin{aligned}
& \begin{array}{llll}
M & p & M & p
\end{array} \\
& \ln \gamma_{A}^{R}=1 \times\left(1.45 \times 10^{-3}-0.409\right)+1 \times(2.21-0.139)=1.66 \\
& \ln \gamma_{P}^{R}=2 \times\left(1.45 \times 10^{-3}-0.0\right)+3 \times(2.21-0.0)=5.68 \times 10
\end{aligned}
$$

