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Introduction

Every scientific discipline has its characteristic set of 
problems and systematic methods for obtaining their 
solution - that is, its paradigm. 



The Structure of Scientific Revolutions 
Thomas S. Kuhn, 

There are four steps in evolution, scientific discovery

Revolution, developing new paradigm
Normal science, studies inside paradigm
Anomalies
Crisis



Chemical engineering started @MIT in 1888

The first paradigm was proposed by Arthur D. Little in 
1915, based on the unifying concept of "unit
operation“

The “old” traditional paradigm around 1950, 
including: thermodynamics and kinetics, transport 
phenomena, unit operations, reaction engineering, 
process design and control, and plant design and 
system engineering



Crisis-- explosion of new products and materials from 
the biotechnology industry, the electronics industry, 
or the high-performance materials industry
“critically” dependent on structure and design at the 
molecular level for their usefulness

The “new” traditional paradigm started around 2000: 
make increasing use of computers, artificial 
intelligence, and expert systems in problem solving

Already 20 years old !
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• Monomers optimized using DFT, B3LYP, 6-311G++2p,2d
• Beads, Chain length and configurations

• DPD beads representation of  PEDOT and PSS 

MODELS AND METHODS
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DPD simulation

• Initial conditions
• DPD Simulation box of PEDOT:PSS:PFI=1:2.5:0.5 @ room 

temperature
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• PEDOT:PSS:PFI=1:2.5:1.0 @RT
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PFI structure configurations

small chunky evenly loose compact dense evenly dense



Mapping

a. DPD b. CG c. Atomistic

Figure 1. Mapping results of PSS:PEDOT:PFI; a DPD, b CG, c Atomistic(top portion)



Mapping

PFI-PEDOT PFI-PSS PFI-PSS-PEDOT

Figure 2. Snapshots of PFI:PSS:PEDOT complex from DPD simulation mapping results.



PFI:PSS:PEDOT HOMO-LUMO

HOMO -5.35eV LUMO

Figure 5. Interactive energy [kcal/mol]of PSS:PEDOT=6:1 and perovskite crystal
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New problem arises: conductivity 

So we ask siri what to do:  Siri, how to increase conductivity ?

Wolfgang Btutting, et al. 



• PSS:PEDOT:PFI, PSS:PEDOT:NiOx micro phase structures 2016
• PSS:PEDOT:PFI, work function 2017
• PSS:PEDOT:solvent,  micro phase structures 2018
• All agree well with the experiment results.

• In this contribution,
predict PSS:PEDOT:Flemion micro structure 
to test Model-Based-Reasoning



Flemion polymer
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DPD Results
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DFT configuration optimization results

PSS:PEDOT:Fle (2019) PSS:PEDOT:PFI (2017)



Why is this has anything to do with 
thermodynamics ?

• Classical Molecular Dynamics: very small in size and time duration
• Mesoscale bridging microscopic view to scales in real life
• Dissipative particle dynamics (DPD)—Coarse grain + Flory-Huggins 

theory a branch of solution theory in thermodynamics
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Thermodynamics is neither engineering, nor physics, 
nor chemistry, nor biology. 
It is a tool used by all above and taken by all science 
and engineering students.
Thermodynamics occupies the same place in sciences 
as logic in humanities.



The origin

 The term “thermodynamics” was introduced by 
Lord Kelvin himself to direct attention to the 
dynamic nature of heat and to contrast this 
perspective with previous conceptions of heat as 
a type of Fluid.

 When taken literally, thermodynamics implies a 
field concerned with the mechanical action 
produced by heat.



the Science of Heat

In ancient west, Earth, Water, Air and Fire are the 
generally known and often quoted ancient 
elements of nature (Aristotle added Aether as the 
5th, the quintessence (精髓) )

− In China, we have 土木火水金.
− By the end of the 18th century, French rich 

aristocrat chemist Lavoisier advocated a theory 
explaining that the phenomena involving the 
transfer of heat are the result of a weightless fluid 
substance, he called “caloric.”



• This “caloric,” as Lavoisier assumed, permeated 
the gaps between atoms of a solid causing thermal 
expansion and whose loss through the surface 
could explain Newtonian cooling.

• Count (伯爵) Rumford found that heat can be 
produced by the boring of cannons and one can 
generate “unlimited amount” of heat simply by 
keeping boring the cannon—mechanical to heat

• Count Rumford’s opinion eventually prevailed, but 
not after Lavoisier being severed by a Guillotine.



Bulk vs. individual particles

Newtonian’s  physics deals with individual point mass,
position and momentum

Thermodynamics deals with bulk properties, P,V; T,S

In probability and statistics, we learned individual events 
may occur in sequential or parallel fashion

Events independently more than 20, maybe described using 
normal distribution



When events piling up, central value theorem tells us, the 
distribution becomes Gaussian. 

Following steepest decent, expand  about its maximum 
value, which occurs at <E>

where the second term equals 0, since  has a maximum at 
<E>; for the third term let,

Refer to my PPT in 
Teaching--> Grad --> Statistical Mechanics
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Substitute <E> as E,

For , using

E ~ N ∆E ~ √𝑁𝑁
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the probability of finding particles outside <E> decreases drastically as 
N increases which allows the states in thermodynamics be defined with 
very few vriables, while the fluctuations at microscopic level still exist.
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