
Lecture Notes II 
 
Example 6  Continuous Stirred-Tank Reactor (CSTR) 

 
Chemical reactors together with mass transfer processes constitute an important part 

of chemical technologies.  From a control point of view, reactors belong to the most 
difficult processes.  This is especially true for fast exothermal processes. 
 

We consider CSTR with a simple exothermal reaction A  B.  For the development 
of a mathematical model of the CSTR, the following assumptions are made,  
1. neglected heat capacity of inner walls of the reactor, constant density and specific 

heat capacity of liquid,  
2. constant reactor volume, constant overall heat transfer coefficient, and  
3. constant and equal input and output volumetric flow rates.  
 

As the reactor is well-mixed, the outlet stream concentration and temperature are 
identical with those in the tank. 
 

  
Figure 1.  A nonisothermal CSTR. 
 

Mass balance of the component A can be expressed as 
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where 
t - time variable, 
cA - molar concentration of A (mole/volume) in the outlet stream, 
cAv - molar concentration of A (mole/volume) in the inlet stream, 
V - reactor volume, 
q - volumetric flow rate, 
r(cA, ϑ) - rate of reaction per unit volume, 
ϑ- temperature of reaction mixture. 
The rate of reaction is a strong function of concentration and temperature (Arrhenius law) 
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where k0 is the frequency factor, E is the activation energy, and R is the gas constant. 
Heat balance gives 
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where 
ϑv - temperature in the inlet stream, 
ϑc - cooling temperature, 
ρ - liquid density, 
cp - liquid specific heat capacity, 
α - overall heat transfer coefficient, 
F - heat transfer area, 
(-∆H) - heat of reaction. 
Initial conditions are 

cA(0) =  0
Ac

ϑ (0) = ϑ0 
The process state variables are concentration cA and temperature ϑ. The input variables 
are ϑc, cAv, ϑv and among them, the cooling temperature can be used as a manipulated 
variable.  The reactor is in the steady-state if derivatives with respect to time in 
equations (1), (3) are zero. Consider the steady-state input variables s
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The steady-state concentration and temperature can be calculated from the equations 
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Please finish the rest as homework. 
 
 
Example 7  Mathematical model of a thermocouple 

 
Figure 2.   Control loop for the Stirred Heating Tank 
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Figure 3.  Temperature sensor (thermocouple) 
 
a) Mathematical model of a bare thermocouple 
 

The energy balance for the bare thermocouple is, 
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where C1 is the molar specific heat capacity of the thermocouple, Qi is the heat flow from 
the media to the thermocouple, and Q0 is the heat lost by the thermocouple.  And, 
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where R1 is the heat resistor, 
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= , A1 surface area of the tip of the thermocouple, 

α1 is the heat transfer coefficient of the heat transfer between the media and the 
thermocouple.  

Assume Q0 = 0, substitute Eq.7 into Eq.6,  
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Follow the steps used in the early examples, 
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Therefore it is a first order system. 
 
b) Mathematical model of a thermocouple with protect jacket 
 
1. The energy balance for the thermocouple with protect jacket is, 
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where C2 is the molar specific heat capacity of the thermocouple protect jacket, Qij is the 
heat flow from the media to the thermocouple protect jacket, Qj0 is the heat flow from the 
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thermocouple protect jacket to the thermocouple, and Qj, Q0 are the heat lost by the 
thermocouple jacket and the thermocouple itself respectively. 
2. Assume Qj, Q0 are equal zero, 
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where A2 is the heat transfer surface area of the thermocouple protect jacket, A1 is the 
heat transfer surface area of the thermocouple tip, α2 is the heat transfer coefficient of the 
heat transfer between the media and the thermocouple protect jacket, α1 is the heat 
transfer coefficient of the heat transfer between the thermocouple protect jacket and the 
thermocouple.  
 Since A2 >> A1, 

 )(222 ji
j A

dt
d

C θθα
θ

−=            12 

we can also arrive at 
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3. The accumulation of the heat in the thermocouple tip is, 
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Similarly we can arrive, 
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4. Now differentiate both sides of Eq.15 with respect to t, 
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Substitute Eqs.13 and 15 into 16, and let τ 1 = R1C1, τ 2 = R2C2,  
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It is a second order system. 
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Figure 4.   Blending system and Control Method 1, measure x and adjust w2 
 
Example 8 The pneumatic control valve 

 
Figure 5.  The schematic diagram of a pneumatic control valve 

p2
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Mass balance of compress air (signal), 
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where C is the capacitor, p2 is the pressure in the diaphragm chamber, Fi, F0, are the in 
and out compress air flow rates. 

R
ppFi

21 −
=Since the diaphragm chamber is sealed, F0 = 0, , R is the resistance of the 

compress air line, therefore, 

 5



 12
2 ppdpRC =+             19 

and 
dt

 )()( 1
0
12

0
2 pppp ∆+=∆+        20 )( 2

0
2

dt
ppdRC +

∆+

      21 
when there is no action, 

.        
Let Tv = RC, 
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Assume the effective area of the diaphragm is A0, and let cs be the rigidity coefficient of 
the spring, according the Hooke's law, 

A0∆p2 = cs∆l   
where ∆l is the displacement of the diaphragm caused by the force acted on by p2. 
Substitute into Eq.22, 
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d ragm ∆l, 
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Assume a linear relationship between the change of the fluid flow rate ∆q and the 
isplacement of the diaph

 ∆q = K∆l              25 
Substitute Eq.25 into 24, 
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RC is the time constant of the pneumatic control valve. 
This is a first or

If the time c smaller than the time 
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 Tv = 

constant of the process it is controlling, Tv→0， 
 ∆q = Kv ∆p1.    

 a proportional system. 
 
Transfer-Function Representation and time domain response of Control-Syst
Element 
 
1. The general form of the first order element, 
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Its transfer function, 
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Step input x(t) = MU(t), 
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Figure 6.  Step response of a first order system 
 
2. The general form of a second order element, 
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where 
mτ

ω 1
0 =  is the undamped natural frequency and ζ is the damping ratio of the 

system. 
Given a step input x(t) = MU(t), 
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e will discuss this system in great detail in
 

 
Figure 7.  Step response of a second order system 
 
3. The general form of the proportional element, 
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Its transfer function is, 
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It is a step with KM as its mag
 
4. The general form of the integral element, 
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Its transfer function is, 
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It is a ramp at the slop of KM/τ i
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Given a step input x(t) = MU(t), 
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6. The general form of delay element 
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Development of Empirical Dynamic Models from Step Response Data 
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 is a step after a time delay of 
 

 
me 

ries of first order systems, we can get an infinite number of higher order systems. 
w tank of time constant τ.  If we introduce a step 

crease in the inlet temperature or concentration, we will (by the well-mixed assumption) 

Higher order system and dead ti
 
Connecting many tanks makes the system correspondingly higher order.  Thus by a 
se
Suppose we have a well-mixed overflo
in
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immediately detect a rise in the outlet stream – the familiar first-order lag response as 
the Figure 6.  If we have instead two tanks in series, each half the volume of the or
we will detect a second-order, sigmoid response at the outlet as in the Figure 7.  If we 
continue to increase the number of tanks in the series, always maintaining the total 
volume, we observe a slower initial response with a faster rise around the time constant. 
This behavior is shown in Figure 9. 

in 
iginal, 

 
Figure 8.  Well mixed tanks in series. 
 

 
Figure 9.  Time response of well mixed tanks in series. 
 

If taken to the limit of an infinite number of tanks, we finally obtain a pure delay, in 
which the full step disturbance is not seen at the outlet until time τ has passed. This is the 

ho has waited at the faucet for 
e hot water to arrive.  That lead us to consider a simple model of the 

first-order-plus-time-delay. 

dead time, or transmission delay; it is familiar to anyone w
th
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Approximate using first-order-plus-time-delay model 
 
The transfer function of the first-order-plus-time-delay, 
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Figure 10.  The time response of first-order-plus-time-delay system 
 

For a first-order-plus-time-delay order model, we note the following characteristics 
(step response) 
a. The response attains 63.2% of its final response at one time constant (t = + θ ). 

intersects the 100% 
line at (t = τ +θ ).  [see Fig. 10] 

c. 
e is essentially complete at t = 5τ.  In other words, the settling time is  

graphical techniques for determining model 

 
Method 1. Slope-intercept method:  First, a slope is drawn through the inflection point 

f the process reaction curve in Figure 10.  Then t and θ are determined by inspection.  
Alte

 the settling time, τ s. Then set τ = τ s / 5. 

two times, t1 and t2, be estimated from a step response curve, corresponding to the 35.3% 

τ 
b. The line drawn tangent to the response at maximum slope (t = θ) 

K is found from the steady state response for an input change magnitude M.  The 
step respons
t  = 5τ. s

 
There are two generally accepted 

parameters τ, θ, and K.   

 
o

rnatively, τ can be found from the time that the normalized response is 63.2% 
complete or from determination of
 
Method 2.  Sundaresan and Krishnaswamy’s Method:  This method avoids use of the 
point of inflection construction entirely to estimate the time delay.  They proposed that 
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and 85.3% response times, respectively.  The time delay and time constant are the
estimated from the following equations, 

n 

 
21 29.03.1 tt −=θ             57 

 
( )1267.0 tt −=τ              58 

 
These values of θ and τ approximately minimize the difference between the measured 

sponse and the model, based on a correlation for many data sets. 
 

 

re

 
 
Example F-16XL Roll Mode Time Constant 
  

In the early 1980s, two F-16 airplanes were modified to extend the fuselage length 
and incorporate a large area delta wing planform.  These two airplanes, designated the 

-16XL, were designed by the General Dynamics Corporation (now Lockheed Martin 
actical Aircraft Systems) (Fort Worth, Texas) and were prototypes for a derivative 

ited States Air Force. 

f 
he 

F
T
fighter evaluation program conducted by the Un
 

In this method shown in figure 11, t1 is defined as the time when the lateral stick 
input reaches 50 percent of maximum value.  A line representing the maximum slope o
the roll rate is plotted; the time at which this line intersects the x-axis is denoted as t2. T
roll rate reaches 63 percent of its maximum value at t3. The τeff is the time difference 
between t2 and t1.  The τr is the difference between t2 and t3.  
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A sample comparison is shown as figure 12. Although the flight data shows a higher 
orde  r roll rate response, the model accurately reproduces the initial delay and roll rate
onset. 
 

 
Figure 11.  Time history method for τeff and τr calculation. 
 

 
Figure 12.  Sample result of comparison between model and F-16XL flight data. 
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Estimating Second-order Model Parameters Using Graphical Analysis 
 

In general, a better approximation to an experimental step response can be obtained 
by fitting a second-order model to the data.  Figure 13 shows the range of shapes that 
can occur for the step response model, 
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Figure 13 includes two limiting cases: τ 1/τ 2 = 0, where the system becomes first order, 
and, τ 1/τ 2 = 1, the critically damped case.  The larger of the two time constants, τ 1, is 
called the dominant time constant.  The assumed model is, 
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Parameters are estimated using so called Smith’s Method, 
1. Determine t20 and t60 from the step response. 
2. Find ζ and t60/τ from Figure 14. 
3. Find t60/τ from Figure 14 and then calculate τ (since t60 is known). 
 

 
Figure 13.  Step response for several overdamped second-order systems. 
  

 

 14



 15

.  Relationship of ζ, τ, t20, and t60 in Smith’s method. 
  
Figure 14


