Thermodynamics

Min Huang
Chemical Engineering
Tongji University

Euler's theorem

- A homogeneous function of degree \mathbf{n} is one for which $f(\lambda \underline{X})=\lambda^{\mathrm{n}} \boldsymbol{f}(\underline{\boldsymbol{X}})$
- Let $f\left(x_{1}, \ldots, x_{n}\right)$ is a first-order homogeneous function of x_{1}, \ldots, x_{n}.
- Let $u_{\mathrm{i}}=\lambda x_{\mathrm{i}}$
- Then $f\left(u_{1}, \ldots, u_{\mathrm{n}}\right)=\lambda f\left(x_{1}, \ldots, x_{\mathrm{n}}\right)$
- Differentiate with respect to λ;

$$
\begin{equation*}
\left(\frac{\partial f\left(u_{1}, \ldots, u_{n}\right)}{\partial \lambda}\right)_{x}=f\left(x_{1}, \ldots, x_{n}\right) \tag{1}
\end{equation*}
$$

Euler's theorem

- From calculus,

$$
\begin{equation*}
d f\left(u_{1}, \ldots, u_{n}\right)=\sum_{i=1}^{n}\left(\partial f / \partial u_{i}\right)_{u_{j}} d u_{i} \tag{2}
\end{equation*}
$$

- and,

$$
\begin{align*}
\left(\partial f / \partial \lambda_{i}\right)_{x_{i}} & =\sum_{i=1}^{n}\left(\partial f / \partial u_{i}\right)_{u_{j}}\left(\partial u_{i} / \partial \lambda_{i}\right)_{x_{i}} \\
& =\sum_{i=1}\left(\partial f / \partial u_{i}\right)_{u_{j}} x_{i} \tag{3}
\end{align*}
$$

Euler's theorem

- Substitute back to the first equation,

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n}\left(\partial f / \partial u_{i}\right)_{u_{j}} x_{i}
$$

- Take $\lambda=1$,

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n}\left(\partial f / \partial x_{i}\right)_{x_{j}} x_{i}
$$

- This is Euler's theorem for first-order homogeneous functions

Euler's theorem

- Since $E=E(S, \underline{X})$ is first-order homogeneous, from the postulate
- Euler's theorem gives,

$$
\begin{aligned}
E & =(\partial E / \partial S)_{X} S+(\partial E / \partial \underline{X})_{s} \underline{X} \\
& =T S+\underline{f} \cdot \underline{\bar{X}} \quad \text { (the second law) }
\end{aligned}
$$

where \underline{X} is a vector means system volume

Legendre Transform

- Assume $f=f\left(x_{1}, \ldots, x_{n}\right)$ is a natural function of x_{1}, \ldots, x_{n}.
- Then, $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n}\left(\partial f / \partial x_{i}\right)_{x_{j}} x_{i}$

$$
d f=\sum_{i=1}^{n} u_{i} d x_{i} \quad u_{i}=\left(\partial f / \partial x_{i}\right)_{x_{j}}
$$

- Let $g=f-\sum_{i=r+1}^{n} u_{i} d x_{i}$

Legendre Transform

- Then, $d g=d f-\sum_{i=r+1}^{n}\left(u_{i} d x_{i}+x_{i} d u_{i}\right)$

$$
=\sum_{i=1}^{r} u_{i} d x_{i}+\sum_{i=r+1}^{n}\left(-x_{i}\right) d u_{i}
$$

- Thus, $g=g\left(x_{1}, \ldots, x_{r}, u_{\mathrm{r}+1}, \ldots, u_{\mathrm{n}}\right)$ is a natural function of $x_{1}, \ldots, x_{\mathrm{r}}$ and the conjugate variables to x_{r+1}, \ldots, x_{n}, namely $u_{\mathrm{r}+1}, \ldots, u_{\mathrm{n}}$.
- The function g is called a Legendre transform of \boldsymbol{f}.

Legendre Transform

- It transform away the dependence upon $x_{\mathrm{r}+1}, \ldots, x_{\mathrm{n}}$ to a dependence upon $u_{\mathrm{r}+1}, \ldots, u_{\mathrm{n}}$.

Work

- In general, work can be divided into two parts:
- work of expansion and contraction and work of the sum of all other forms
- Therefore in the reversible case,

$$
\underline{f} \cdot d \underline{X}=-p d V+\sum \mu_{i} d n_{i}
$$

where μ_{i} is the chemical potential of species i

Legendre Transform

- From the first and second law, we have

$$
E=E(S, V, n)
$$

- We construct a natural function of T, V and n, by subtract from the $E(S, V, n)$ the quantity
$S \times($ variable conjugate to $S)=S T$.
- Let $A(T, V, n)=E-T S$ called the Helmholtz free energy
Therefore,
L $A=-S d T-p d V+\sum_{i=1}^{r} \mu_{i} d n_{i}$

Legendre Transform

- Let $G(T, p, n)$ be the Gibbs free energy $G=E-T S-(-p V)$
- And H(S, p, n) be the Enthalpy

$$
\mathbf{H}=E-(-p V)=E+p V
$$

- Therefore,

$$
\begin{aligned}
& d G=-S d T-V d p+\sum_{i=1}^{r} \mu_{i} d n_{i} \\
& d H=T d S+V d p+\sum_{i=1}^{r} \mu_{i} d n_{i}
\end{aligned}
$$

Maxwell Relations

- If $d f=a d x+b d y$ from calculus,

$$
(\partial a / \partial y)_{x}=(\partial b / \partial x)_{y}
$$

- Recall $d A=-S d T-p d V+\mu d n$
- Then we have

$$
(\partial S / \partial V)_{T, n}=(\partial p / \partial T)_{V, n}
$$

Maxwell Relations

- Therefore, $d G=-S d T-V d p+\mu d n$
- we have $(\partial S / \partial p)_{T, n}=-(\partial V / \partial T)_{p, n}$

Maxwell Relations

- Next

$$
\begin{aligned}
& C_{v}=T(\partial S / \partial T)_{V, n} \\
& \begin{aligned}
\left(\frac{\partial C_{v}}{\partial V}\right)_{T, n} & =T\left(\frac{\partial}{\partial V}\left(\frac{\partial S}{\partial T}\right)_{V, n}\right)_{T, n} \\
& =T\left(\frac{\partial}{\partial T}\left(\frac{\partial S}{\partial V}\right)_{T, n}\right)_{V, n} \\
& =T\left(\frac{\partial}{\partial T}\left(\frac{\partial p}{\partial T}\right)_{V, n}\right)_{V, n} \\
& =T\left(\frac{\partial^{2} p}{\partial T^{2}}\right)_{V, n}
\end{aligned}
\end{aligned}
$$

Maxwell Relations

- Let

$$
C_{p}=T\left(\frac{\partial S}{\partial T}\right)_{p, n}
$$

- Viewing S as a function of T, V and n
- We have

$$
\begin{aligned}
& (d S)_{n}=\left(\frac{\partial S}{\partial T}\right)_{V, n}(d T)_{n}+\left(\frac{\partial S}{\partial V}\right)_{T, n}(d V)_{n} \\
& \left(\frac{\partial S}{\partial T}\right)_{p, n}=\left(\frac{\partial S}{\partial T}\right)_{V, n}+\left(\frac{\partial S}{\partial V}\right)_{T, n}\left(\frac{d V}{\partial T}\right)_{n, p}
\end{aligned}
$$

Maxwell Relations

- Hence $\frac{1}{T} C_{p}=\frac{1}{T} C_{v}+\left(\frac{\partial p}{\partial T}\right)_{V, n}\left(\frac{\partial V}{\partial T}\right)_{n, p}$
- Note that $\left(\frac{\partial x}{\partial y}\right)_{z}=-\left(\frac{\partial x}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial y}\right)_{x}$
- $\mathbf{S o}(\partial p / \partial T)_{V, n}=-(\partial p / \partial V)_{T, n}(\partial V / \partial T)_{p, n}$
- Therefore

$$
C_{p}-C_{v}=-T(\partial p / \partial V)_{T, n}\left[(\partial V / \partial T)_{p, n}\right]^{2}
$$

Extensive Function

- A macroscopic property is extensive if it depends linearly on the size of the system
- Consider the internal energy E, which is extensive, how it depends upon S and \underline{X}, which are also extensive.

$$
E(\lambda S, \lambda \underline{X})=\lambda E(S, \underline{X})
$$

- Thus, $E(S, \underline{X})$ is a first order homogeneous function of S and \underline{X}.

Extensive Function

- Euler's theorem gives,

$$
\begin{aligned}
E & =(\partial E / \partial S)_{X_{X}} S+(\partial E / \partial \underline{X})_{s} \underline{X} \\
& =T S+\underline{X} \cdot \underline{X}
\end{aligned}
$$

- And work is

$$
\underline{f} \cdot d \underline{X}=-p d V+\sum \mu_{i} d n_{i}
$$

- This flow naturally to givé,

$$
d E=T d S-p d V+\sum_{i=1}^{r} \mu_{i} d n_{i}
$$

Extensive Function

- This is, $E=E\left(S, V, n_{1}, \ldots, n_{\mathrm{r}}\right)$, and Euler's theorem yields

$$
\underset{\text { ifferential is }}{E=T S-p V}+\sum_{i=1}^{r} \mu_{i} d n_{i}
$$

$$
\begin{aligned}
& d E=T d S+S d T-p d V-V d p+\sum_{i=1}^{r}\left(\mu_{i} d n_{i}+n_{i} d \mu_{i}\right) \\
& \text { herefore, }
\end{aligned}
$$

$$
0=S d T-V d p+\sum_{i=1}^{r}\left(n_{i} d \mu_{i}\right)
$$

This is the Gibbs-Duhem Equation

Extensive Function

- Recall the definition of Gibbs free energy

$$
G=E-T S-(-p V)
$$

- Apply Euler's theorem gives,
$d G=\left(T S-p V+\sum_{i=1}^{r} \mu_{i} d n_{i}\right)-T S-p V$ $=\sum^{r} \mu_{i} d n_{i}$
- For ${ }_{i}^{i=1}$ one component system $\mu=\mathbf{G} / \mathbf{n}$, Gibbs free energy per mole

Mixture/solution

- Chemical Potential
- Partial Molar Property
- Partial Pressure
- Ideal-Gas Mixtures
- enthalpy of an ideal gas
- entropy of an ideal gas
- Gibbs energy of an ideal-gas mixture $\boldsymbol{G}^{i g}=$ $H^{i g}-\boldsymbol{T S}^{i g}$,

Mixture/solution

- Because the properties of systems in chemical engineering depend strongly on composition as well as on temperature and pressure,
- Need to develop the theoretical foundation for applications of thermodynamics to gas mixtures and liquid solutions

Mixture/solution

- definition of a fundamental new property called the chemical potential, upon which the principles of phase and chemicalreaction equilibrium depend.
- This leads to the introduction of a new class of thermodynamic properties known as partial properties.

Chemical potential

- Gibbs free energy of a multicomponent mixture is a function of T, P and each species mole number, therefore, the total differential of the Gibbs free energy,

$$
\begin{align*}
d G & =\left(\frac{\partial G}{\partial T}\right)_{P, N_{i}} d T+\left(\frac{\partial G}{\partial P}\right)_{P, N_{i}} d P+\sum_{i}^{\mathrm{C}}\left(\frac{\partial G}{\partial N_{i}}\right)_{P, N_{i}} \\
& =-S d T+V d P+\sum_{i}^{c} \bar{G}_{i} d N_{i} \tag{CP1}
\end{align*}
$$

Chemical potential

- Recall

$$
\begin{aligned}
d G & =\left(T S-p V+\sum_{i=1}^{r} \mu_{i} d n_{i}\right)-T S-p V \\
& =\sum_{i=1}^{r} \mu_{i} d n_{i}
\end{aligned}
$$

- in extensive function, therefore we have

$$
\mu_{i} \equiv\left[\frac{\partial(n G)}{\partial n_{i}}\right]_{p, T, n_{i \neq j}}
$$

Chemical Potential

 and Phase Equilibrium- Consider a closed system consisting of two phases in equilibrium.
- Within this closed system, each individual phase is an open system, free to transfer mass to the other, that is

$$
\begin{aligned}
& d(n G)^{\alpha}=-(n S)^{\alpha} d T+(n V)^{\alpha} d p+\sum_{i=1} \mu_{i}^{\alpha} d n_{i}^{\alpha} \\
& d(n G)^{\beta}=-(n S)^{\beta} d T+(n V)^{\beta} d p+\sum_{i=1} \mu_{i}^{\beta} d n_{i}^{\beta}
\end{aligned}
$$

Chemical Potential and Phase Equilibrium

- The change in the total Gibbs energy of the two-phase system is the sum of these equations.

$$
\begin{aligned}
& d(n G)=-(n S) d T+(n V) d p+\sum_{i=1} \mu_{i}^{\alpha} d n_{i}^{\alpha}+\sum_{i=1} \mu_{i}^{\beta} d n_{i}^{\beta} \\
& \sum_{i=1} \mu_{i}^{\alpha} d n_{i}^{\alpha}+\sum_{i=1} \mu_{i}^{\beta} d n_{i}^{\beta}=0
\end{aligned}
$$

Chemical Potential

and Phase Equilibrium

- And $d n_{i}^{\alpha}=-d n_{i}^{\beta}$
- Therefore,

$$
\begin{aligned}
& \sum_{i=1}\left(\mu_{i}^{\alpha}-\mu_{i}^{\beta}\right) d n_{i}^{\alpha}=0 \\
& \mu_{i}^{\alpha}=\mu_{i}^{\beta} \quad(i=1,2, \ldots, N)
\end{aligned}
$$

- Thus, multiple phases at the same T and P are in equilibrium when the chemical potential of each species is the same in all phases.

Partial Molar Property

- Partial Molar Property (θ)

$$
\mu_{i} / \theta \equiv\left[\frac{\partial(n G / \theta)}{\partial n_{i}}\right]_{p, T, n_{i \neq j}}
$$

- It is a response function, representing the change of total property θ due to addition at constant T and P of a differential amount of species \boldsymbol{i} to a finite amount of mixture/solution.

Partial Molar Property

- Let $\underline{\theta}$ be any molar property (molar volume, molar enthalpy, etc.) of a mixture consisting of $\boldsymbol{N}_{\boldsymbol{i}}$ moles of species $\boldsymbol{i}, \quad N=\sum_{i}^{\mathrm{C}} N_{i}$
- And partial molar thermodynamic property

$$
\bar{\theta}_{i}=\bar{\theta}_{i}(T, P, \underline{x})=\left.\frac{\partial(N \underline{\theta})}{\partial N_{i}}\right|_{T, P, N_{j \neq i}}
$$

- Therefore,

$$
\underline{\theta}=\sum_{i=1}^{C} x_{i} \bar{\theta}_{i}(T, P, \underline{x})
$$

Partial Molar Property

- Or

$$
N \underline{\theta}=\sum_{i=1}^{c} N_{i} \overline{\theta_{i}}
$$

So that, by the product rule of differentiation,

$$
d(N \underline{\theta})=\sum N_{i} d \bar{\theta}_{i}+\sum \bar{\theta} d N_{i}
$$

PM 1

- substitute G with $N \underline{\theta}$ into $\mathbf{E q}$. CP 1

Partial Molar Property

- substitute \boldsymbol{G} with $\boldsymbol{N} \underline{\theta}$ into Eq. CP 1

$$
\begin{aligned}
d N \underline{\theta} & =\left(\frac{\partial N \underline{\theta}}{\partial T}\right)_{P, N_{i}} d T+\left(\frac{\partial N \underline{\theta}}{\partial P}\right)_{T, N_{i}} d P+\sum_{i}^{\mathrm{C}}\left(\frac{\partial N \underline{\theta}}{\partial N_{i}}\right)_{P, N_{i}} d N_{i} \\
& =N\left(\frac{\partial \underline{\theta}}{\partial T}\right)_{P, N_{i}} d T+N\left(\frac{\partial \underline{\theta}}{\partial P}\right)_{T, N_{i}} d P+\sum_{i}^{\mathrm{C}} \bar{\theta}_{i} d N_{i}
\end{aligned}
$$

PM 2

Partial Molar Property

- Subtracting PM 2 from PM 1,

$$
-N\left(\frac{\partial \underline{\theta}}{\partial T}\right)_{P, N_{i}} d T-N\left(\frac{\partial \underline{\theta}}{\partial P}\right)_{T, N_{i}} d P+\sum_{i}^{\mathrm{C}} N_{i} d \bar{\theta}_{i}=0
$$

- Or,

$$
-\left(\frac{\partial \underline{\theta}}{\partial T}\right)_{P, N_{i}} d T-\left(\frac{\partial \underline{\theta}}{\partial P}\right)_{T, N_{i}} d P+\sum_{i}^{\mathrm{C}} x_{i} d \overline{\theta_{i}}=0
$$

This is the generalized Gibbs-Duhem Equation

Partial Molar Property

- For constant temperature and pressure,

$$
\begin{aligned}
& \left.\sum_{i=1}^{c} N_{i} d \bar{\theta}_{i}\right|_{T, P}=0 \\
& \left.\sum_{i=1}^{C} x_{i} d \bar{\theta}_{i}\right|_{T, P}=0
\end{aligned}
$$

- Substitute θ with G

$$
\begin{aligned}
& S d T-V d P+\sum_{i=1}^{C} N_{i} d \bar{G}_{i}=0 \\
& \underline{S} d T-\underline{V} d P+\sum_{i=1}^{c} x_{i} d \bar{G}_{i}=0
\end{aligned}
$$

Partial Molar Property

- At constant temperature and pressure,

$$
\begin{aligned}
& \sum_{i=1}^{c} N_{i} d \bar{G}_{i}=0 \\
& \sum_{i=1}^{c} x_{i} d \bar{G}_{i}=0
\end{aligned}
$$

- Recall Gibbs-Duhem Equation

$$
-\left(\frac{\partial \underline{\theta}}{\partial T}\right)_{P, N_{i}} d T-\left(\frac{\partial \underline{\theta}}{\partial P}\right)_{T, N_{i}} d P+\sum_{i}^{\mathrm{C}} x_{i} d \bar{\theta}_{i}=0
$$

Partial Molar Property

- Rearrange,

$$
d \bar{\theta}_{i}=\left(\frac{\partial \bar{\theta}_{i}}{\partial T}\right)_{p, \underline{x}} d T+\left(\frac{\partial \bar{\theta}_{i}}{\partial p}\right)_{T, \underline{x}} d p+\sum_{j=1}^{C-1}\left(\frac{\partial \bar{\theta}_{i}}{\partial x_{j}}\right)_{T, p} d \underline{x}_{j}
$$

- Substitute back to the Gibbs-Duhem Equation

$$
\begin{aligned}
& 0=-\left(\frac{\partial \bar{\theta}_{i}}{\partial T}\right)_{p, N_{i}} d T-\left(\frac{\partial \bar{\theta}_{i}}{\partial p}\right)_{T, N_{i}} d p \\
& +\sum_{j=1}^{c} x_{i}\left[\left(\frac{\partial \bar{\theta}_{i}}{\partial T}\right)_{p, \underline{\underline{x}}} d T+\left(\frac{\partial \bar{\theta}_{i}}{\partial p}\right)_{T, \underline{\underline{x}}} d p+\sum_{j=1}^{c-1}\left(\frac{\partial \bar{\theta}_{i}}{\partial x_{j}}\right)_{T, p} d \underline{x}_{j}\right]
\end{aligned}
$$

Partial Molar Property

- Since

$$
\sum_{i=1}^{c} x_{i}\left(\frac{\partial \bar{\theta}_{i}}{\partial T}\right)_{p, \underline{\underline{x}}} d T=\left.\frac{\partial}{\partial T}\right|_{p, \underline{\underline{x}}}\left(\sum_{i=1}^{c} x_{i} \bar{\theta}_{i}\right) d T=\left(\frac{\partial \underline{\theta}}{\partial T}\right)_{p, \underline{x}} d T
$$

- Finally

$$
\sum_{i=1}^{c} x_{i} \sum_{j=1}^{c-1}\left(\frac{\partial \bar{\theta}_{i}}{\partial x_{j}}\right)_{T, P} d x_{j}=0
$$

- For Binary

$$
\sum_{i=1}^{2} x_{i} \sum_{j=1}^{C-1}\left(\frac{\partial \bar{\theta}_{i}}{\partial x_{1}}\right)_{T, p} d x_{1}=0 \quad x_{1}\left(\frac{\partial \bar{\theta}_{1}}{\partial x_{1}}\right)_{T, p}+x_{2}\left(\frac{\partial \bar{\theta}_{2}}{\partial x_{1}}\right)_{T, p}=0
$$

Ideal-Gas Mixtures

- Ideal gas $p=\frac{n R T}{V^{t}} \quad p_{i}=\frac{n_{i} R T}{V^{t}}$

$$
\frac{p_{i}}{p}=\frac{n_{i}}{n}=y_{i} \quad \text { or } \quad p_{i}=y_{i} p \quad(i=1,2, \ldots, N)
$$

- p_{i} is known as the partial pressure of species
i

$$
\begin{aligned}
& \bar{V}_{i}^{i g}=\left[\frac{\partial\left(n V^{i g}\right)}{\partial n_{i}}\right]_{T, p, n_{i}}=\left[\frac{\partial(n R T / p)}{\partial n_{i}}\right]_{T, p, n_{i}} \\
& \frac{R T}{P}\left(\frac{\partial n}{\partial n_{i}}\right)_{n_{j}}=\frac{R T}{P}
\end{aligned}
$$

Ideal-Gas Mixtures

- A partial molar property (other than volume) of a constituent species in an idealgas mixture is equal to the corresponding molar property of the species as a pure ideal gas at the mixture temperature but at a pressure equal to its partial pressure in the mixture.

$$
\bar{M}_{i}^{i g}(T, P)=M_{i}^{i g}\left(T, p_{i}\right) \text { when } M_{i}^{i g} \neq V_{i}^{i g}
$$

Ideal-Gas Mixtures

- Since the enthalpy of an ideal gas is independent of pressure,

$$
\begin{aligned}
& H_{i}^{i g}\left(T, p_{i}\right)=H_{i}^{i g}(T, p) \\
& \overline{H_{i}^{i g}}(T, p)=H_{i}^{i g}(T, p) \\
& \overline{H_{i}^{i g}}=H_{i}^{i g}(\text { pure value at mixture } T, p) \\
& H^{i g}=\sum_{i} y_{i} H_{i}^{i g}
\end{aligned}
$$

- For ideal gases, this enthalpy change of mixing is zero.

Ideal-Gas Mixtures

- The entropy of an ideal gas does depend on pressure, is given as

$$
d S_{i}^{i g}=R d \ln p \quad \text { at const } T
$$

- Therefore, integration from p_{i} to \boldsymbol{p}

$$
S_{i}^{i g}(T, p)-S_{i}^{i g}\left(T, p_{i}\right)=-R \ln \frac{p}{p_{i}}=R \ln y_{i}
$$

Ideal-Gas Mixtures

- Recall $\bar{M}_{i}^{i g}(T, P)=M_{i}^{i g}\left(T, p_{i}\right)$ when $M_{i}^{i g} \neq V_{i}^{i g}$
- Therefore,

$$
\begin{aligned}
& \bar{S}_{i}^{i g}(T, p)=S_{i}^{i g}(T, p)-R \ln y_{i} \\
& \bar{S}_{i}^{i g}=S_{i}^{i g}-R \ln y_{i}
\end{aligned}
$$

- Where $S_{\mathrm{i}}^{\mathrm{ig}}$ is the pure-species value at the mixture T and P.

Ideal-Gas Mixtures

- By the summability relation

$$
\begin{gathered}
S_{i}^{i g}=\sum_{i} y_{i} S_{i}^{i g}-R \sum_{i} y_{i} \ln y_{i} \\
S_{i}^{i g}-\sum_{i} y_{i} S_{i}^{i g}=R \sum_{i} y_{i} \ln \frac{1}{y_{i}}
\end{gathered}
$$

- the left side of the second equation is the entropy change of mixing for ideal gases. Since $l / y_{i}>1$, this quantity is always positive, in agreement with the second law.

Ideal-Gas Mixtures

- For the Gibbs energy of an ideal-gas mixture $\boldsymbol{G}^{i g}=\boldsymbol{H}^{i g}-T S^{i g}$,
- for partial properties is

$$
\begin{aligned}
& {\overline{G_{i}^{i g}}}_{i g}=\bar{H}_{i}^{i g}-\bar{T} S_{i}^{i g} \\
& \bar{G}_{i}^{i g}=H_{i}^{i g}-T S_{i}^{i g}+R T \ln y_{i} \\
& \mu_{i}^{i g} \equiv \bar{G}_{i}^{i g}=G_{i}^{i g}+R T \ln y_{i}
\end{aligned}
$$

Recap Mixture/solution

- Gibbs free energy of a multicomponent mixture
- Chemical Potential
- Partial Molar Property
- Partial Pressure of Ideal-Gas
- Ideal-Gas Mixtures
- enthalpy of an ideal gas
- entropy of an ideal gas
- Gibbs energy of an ideal-gas mixture $\boldsymbol{G}^{i g}=\boldsymbol{H}^{i g}$ TSis,

