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Euler’s theorem

• A homogeneous function of degree n is one 
for which f(λX)=λn f(X)

• Let f(x1,…,xn) is a first-order homogeneous 
function of x1,…,xn.

• Let ui = λxi

• Then f(u1,…,un) = λ f(x1,…,xn) 
• Differentiate with respect to λ;
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Euler’s theorem

• From calculus,

• and, 
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Euler’s theorem

• Substitute back to the first equation,

• Take λ = 1, 

• This is Euler’s theorem for first-order 
homogeneous functions
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Euler’s theorem

• Since                      is first-order 
homogeneous, from the postulate

• Euler’s theorem gives,

( the second law )
where X is a vector means system volume
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Legendre Transform

• Assume f = f(x1,…,xn) is a natural function 
of x1,…,xn.

• Then,

• Let 
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Legendre Transform

• Then,

• Thus, g = g(x1,…,xr,ur+1,…,un) is a 
natural function of x1,…,xr and the 
conjugate variables to  xr+1,…,xn, namely  
ur+1,…,un.

• The function g is called a Legendre 
transform of f. 
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Legendre Transform

• It transform away the dependence upon 
xr+1,…,xn to a dependence upon ur+1,…,un.



Work

• In general, work can be divided into two 
parts:

• work of expansion and contraction and 
work of the sum of all other forms

• Therefore in the reversible case,

where µi is the chemical potential of species i
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Legendre Transform

• From the first and second law, we have 
E = E(S, V, n)

• We construct a natural function of T, V and 
n, by subtract from the E(S, V, n) the 
quantity 
S  ╳ (variable conjugate to S) = ST.

• Let     A(T, V, n) = E – TS called the  
Helmholtz free energy
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Legendre Transform

• Let  G(T, p, n) be the Gibbs free energy
G = E – TS – (–pV)

• And H(S, p, n) be the Enthalpy
H = E – (–pV) = E + pV

• Therefore, 
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Maxwell Relations

• If df = adx + bdy from calculus, 

• Recall

• Then we have  
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Maxwell Relations

• Therefore, 

• we have 
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Maxwell Relations

• Next ( )
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Maxwell Relations

• Let

• Viewing S as a function of T, V and n
• We have
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Maxwell Relations

• Hence

• Note that

• So
• Therefore 
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Extensive Function

• A macroscopic property is extensive if it 
depends linearly on the size of the system

• Consider the internal energy E, which is 
extensive, how it depends upon S and X, 
which are also extensive.

• Thus, E(S,X) is a first order 
homogeneous function of S and X.
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Extensive Function

• Euler’s theorem gives,

• And work is 

• This flow naturally to give, 
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Extensive Function

• This is, E = E(S,V, n1,…,nr), and Euler’s 
theorem yields

• Its total differential is

• Therefore,
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This is the Gibbs-Duhem Equation



Extensive Function

• Recall the definition of Gibbs free energy
G = E – TS – (–pV)

• Apply Euler’s theorem gives,

• For one component system µ = G/n, 
Gibbs free energy per mole
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Mixture/solution

• Chemical Potential
• Partial Molar Property
• Partial Pressure
• Ideal-Gas Mixtures

– enthalpy of an ideal gas
– entropy of an ideal gas

• Gibbs energy of an ideal-gas mixture Gig = 
Hig – TSig, 



Mixture/solution

• Because the properties of systems in 
chemical engineering depend strongly on 
composition as well as on temperature and 
pressure, 

• Need to develop the theoretical foundation 
for applications of thermodynamics to gas 
mixtures and liquid solutions



Mixture/solution

• definition of a fundamental new property 
called the chemical potential, upon which 
the principles of phase and chemical-
reaction equilibrium depend. 

• This leads to the introduction of a new class 
of thermodynamic properties known as 
partial properties.



Chemical potential

• Gibbs free energy of a multicomponent 
mixture is a function of T, P and each 
species mole number, therefore, the total 
differential of the Gibbs free energy,
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Chemical potential

• Recall

• in extensive function, therefore we have
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Chemical Potential 
and Phase Equilibrium

• Consider a closed system consisting of two 
phases in equilibrium. 

• Within this closed system, each individual 
phase is an open system, free to transfer 
mass to the other, that is
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Chemical Potential 
and Phase Equilibrium

• The change in the total Gibbs energy of the 
two-phase system is the sum of these 
equations.  
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Chemical Potential 
and Phase Equilibrium

• And
• Therefore, 

• Thus, multiple phases at the same T and P 
are in equilibrium when the chemical 
potential of each species is the same in all 
phases.
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Partial Molar Property

• Partial Molar Property (θ )

• It is a response function, representing the 
change of total property θ due to addition at 
constant T and P of a differential amount of 
species i to a finite amount of 
mixture/solution.
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Partial Molar Property

• Let θ be any molar property (molar volume, 
molar enthalpy, etc.) of a mixture consisting of Ni
moles of species i,

• And partial molar thermodynamic property

• Therefore, 
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Partial Molar Property

• Or

So that, by the product rule of differentiation, 

• substitute G with Nθ into Eq. CP 1
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Partial Molar Property

• substitute G with Nθ into Eq. CP 1
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Partial Molar Property

• Subtracting PM 2 from PM 1,

• Or,
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Partial Molar Property

• For constant 
temperature and 
pressure,

• Substitute θ with G
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Partial Molar Property

• At constant temperature and pressure,

• Recall Gibbs-Duhem Equation
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Partial Molar Property

• Rearrange,

• Substitute back to the Gibbs-Duhem Equation 
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Partial Molar Property

• Since

• Finally

• For Binary
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Ideal-Gas Mixtures

• Ideal gas

• pi is known as the partial pressure of species 
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Ideal-Gas Mixtures

• A partial molar property (other than 
volume) of a constituent species in an ideal-
gas mixture is equal to the corresponding 
molar property of the species as a pure ideal 
gas at the mixture temperature but at a 
pressure equal to its partial pressure in the 
mixture.
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Ideal-Gas Mixtures

• Since the enthalpy of an ideal gas is 
independent of pressure,

• For ideal gases, this enthalpy change of 
mixing is zero.
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Ideal-Gas Mixtures

• The entropy of an ideal gas does depend on 
pressure, is given as

• Therefore, integration from pi to p
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Ideal-Gas Mixtures

• Recall
• Therefore,

• Where Si
ig is the pure-species value at the 

mixture T and P.
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Ideal-Gas Mixtures

• By the summability relation

• the left side of the second equation is the 
entropy change of mixing for ideal gases. 
Since l/yi > 1, this quantity is always 
positive, in agreement with the second 
law.
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Ideal-Gas Mixtures

• For the Gibbs energy of an ideal-gas 
mixture Gig = Hig – TSig, 

• for partial properties is 
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Recap Mixture/solution
• Gibbs free energy of a multicomponent mixture
• Chemical Potential
• Partial Molar Property
• Partial Pressure of Ideal-Gas
• Ideal-Gas Mixtures

– enthalpy of an ideal gas
– entropy of an ideal gas

• Gibbs energy of an ideal-gas mixture Gig = Hig –
TSig, 


